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In this supplement, we provide more implementation de-
tails of the network architecture of the three components we
proposed: contextual audio to expression encoding (Sec. 1),
implicit representation parameterization (Sec. 2), render-
ing with parametric implicit representation (Sec. 3). Please
note that we also include an additional ablation study on the
choice of hyper-parameter k in Sec. 1. Lastly, we show ad-
ditional qualitative evaluation results in Sec. 4. We strongly
encourage readers to watch our supplementary video, which
demonstrates the superiority of our method.

1. Contextual Audio to Expression Encoding

1.1. Network Architecture

As Fig. 1 shows, our contextual audio to expression en-
coding component is a transformer-based architecture sim-
ilar to [4], consisting of a transformer encoder and decoder.

For the transformer encoder, we first extract the primary
audio feature of a raw audio A through wav2vec 2.0 [1],
which consists of an audio feature extractor and a multi-
layer transformer encoder. Between them, the audio feature
extractor consists of several temporal convolutions layers
(TCN), and the transformer encoder is a stack of multi-head
self-attention and feed-forward layers. Note that we have
added a linear interpolation layer in-between to resample
the audio features from the TCN output to ensure that they
share the same sampling frequency with the training video.
The dimension of each block is 1024 and the number of
attention heads is 16. A linear projection layer is added
after the transformer blocks to project the extracted features
to the input space of the biased cross-modal MH Attention
blocks in the transformer decoder.

The transformer decoder takes input from the output of
the transformer encoder, the style embedding layer, and
the expression encoder. Its output is converted by the ex-
pression decoder into the predicted expression parameter
a1, a2, ..., ak. We use a sequence of k = 100 video frames
for training. Among them, the style embedding and expres-
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Figure 1. Network architecture of our contextual audio to expres-
sion encoding component.

sion encoder are both fully-connected layers with a dimen-
sion of 1024; the expression decoder is a fully-connected
layer with a dimension of 64. The style embedding layer
takes the identity parameter zid as input. The expression
encoder takes the previous predicted expression parame-
ter a1, a2, ..., ak−1 as input. Their outputs are summed to-
gether except for the first frame when only zid is available.
Like [4], each block in the transformer decoder consists of
a periodic positional encoding layer, a biased causal multi-
head self-attention layer, a biased cross-modal multi-head
attention layer and a feed forward layer, whose details are
described as follows.
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Periodic Positional Encoding (PPE). PPE is used for the
injection of temporal order and is formulated as:

PPE(t,2i) = sin
(
(t mod p)/100002i/d

)
PPE(t,2i+1) = cos

(
(t mod p)/100002i/d

), (1)

where p = 25 indices, the period t denotes the current time-
step in the input sequence, d is its dimension and i is the
dimension index. The output of PPE is a sequence of fea-
tures F t = (f1, . . . , f t), 1 ≤ t ≤ k.

Biased Causal Multi-head (MH) Self-attention. This
layer is designed to ensure causality and to improve the gen-
eralization of the model to long sequences, which is formu-
lated as:

MH(QF ,KF , V F , BF ) = Concat(head1, . . . ,headH)W
F

headh = softmax

(
QF

h (K
F
h )T√

dk
+BF

h

)
V F
h

BF (i, j) =

{
⌊(i− j)/p⌋, j ≤ i

−∞, otherwise

BF
h = BFm

,

(2)
where QF ,KF , V F are projected from the sequence F t =

(f1, . . . , f t), W
F is a parameter matrix, dk is the dimen-

sion of QF and KF , BF is the temporal bias matrix and i, j
are the indices of it, and m is a head-specific slope. The out-
put of this layer is a sequence of features F̃t = (f̃1, . . . , f̃t),
1 ≤ t ≤ k.

Biased Cross-modal Multi-head (MH) Attention. This
layer combines the output of the transformer encoder and
F̃t = (f̃1, . . . , f̃t), which is formulated as:

Att(QF̃ ,KA, V A, BA) = softmax

(
QF̃ (KA)T√

dk
+BA

)
V A

BA(i, j) =

{
0, i ≤ j < (i+ 1)

−∞, otherwise

,

(3)
where BA is the alignment bias matrix. Equation (3) is ex-
tended to H heads to explore different subspaces.

Feed Forward Layer. A fully-connected layer of dimen-
sion 2048.

For both the biased causal MH self-attention and the bi-
ased cross-modal MH attention, 4 heads are employed with
a model dimension of 1024. We use Ne = 24 and Nd = 1
transformer blocks in our implementation.

1.2. Ablation Study on Sequence Length k

As mentioned in our main paper, our audio to expres-
sion encoding is a stand-alone and light-weight task that

k 1 10 50 100 200

LMD↓ 2.556 2.273 1.626 1.477 1.650
AVConf↑ 4.201 4.505 6.873 7.071 6.929

Table 1. Ablation study of hyper-parameter k (sequence length).
k = 1 indicates no use of contextual information.

can learn the contextual information from long audio se-
quences. To justify the benefit brought by long sequences,
we conduct an ablation study on the sequence length k. As
Tab. 1 shows, in general, the generated talking head videos
achieve better LMD and AVConf scores with longer train-
ing audio sequences, indicating that capturing the long-term
contextual information from audio sequences helps gener-
ate highly synchronized lip movements for talking portraits.
We use k = 100 in our method as it achieves the best scores.

2. Implicit Representation Parameterization
We implement our implicit representation parameteriza-

tion based on an efficient tri-plane structure [2].
As shown in Fig. 2 of the main paper, we employ a map-

ping network to produce a 512-D intermediate latent vector
z from the concatenation of identity parameter zid and ex-
pression parameter zexp. Conditioned on the latent vector
z, a StyleGAN2 [6] generator is employed to generate a
96 × 256 × 256 feature map. Then the feature map is split
into three axis-aligned orthogonal feature planes, each with
a resolution of 32×256×256. Given camera pose R, t and
intrinsic matrix K, a 3D point position in world coordinates
[xw yw zw 1]T is calculated based on:

zc

uv
1

 = K

[
R t
0 1

]
xw

yw
zw
1

 , (4)

where [u v 1]T is the 2D point position in pixel coordinates
and zc is the z-coordinate of 3D point position in camera
coordinates. Then we project it onto each of the three fea-
ture planes, retrieve the feature vector (Fxy, Fxz, Fyz via bi-
linear interpolation, and aggregate the three feature vectors
via summation. These aggregated features are interpreted as
32-D color and 1-D density through a lightweight decoder
which is a multi-layer perceptron with a single hidden layer
and a softplus activation function. Furthermore, they are
reconstructed as a 32 × 64 × 64 feature map IF using vol-
ume rendering. Two-pass importance sampling strategy is
used to implement volume rendering [7] as in [8]. Com-
pared to NeRF structures using large fully connected net-
works [8], the computational cost of tri-plane based neural
rendering is reduced since it has a smaller decoder. Fi-
nally, a CNN-based upsampling network is used to upsam-



Rendering with Parametric Implicit Representa�on
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Figure 2. Network architecture of our rendering with parametric implicit representation component. We formulate facial reenactment as
an image inpainting problem conditioned on the implicit representation IF and use a coarse-to-fine network structure to tackle it.
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Figure 3. Additional qualitative comparison with ATVG [3], Wav2Lip [9], MakeitTalk [13] and PC-AVS [12].

ple and render IF to the final image Iface with a resolution
of 3× 512× 512.

3. Rendering with PIR
As shown in Fig. 2, our rendering with parametric im-

plicit representation (PIR) component uses a coarse-to-fine
generator [10] to generate the output image. The input
3 × 512 × 512 masked image IM is downsampled to a
3 × 256 × 256 image through the average pooling. Then
the image is further processed through several convolution
layers and concatenated with the augmented feature map
IF from the implicit representation parameterization com-

ponent. The concatenated features are further processed
through 4 residual blocks and several convolution layers.
After that, the features is summed with the feature maps ex-
tracted from IM , passing through 3 residual blocks and fi-
nally rendering into the output image I through convolution
layers.

4. Additional Qualitative Results
As a complement to the main paper, we show additional

qualitative results of ATVG [3], Wav2Lip [9], MakeitTalk
[13], PC-AVS [12] and our method. As Fig. 3 shows, it can
be observed that our method generates talking portraits with
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Figure 4. Comparison with AD-NeRF [5] and FACIAL [11].

highly synchronized lip movements and high fidelity to the
facial details, outperforming all previous methods.

We also show more qualitative comparison results with
AD-NeRF [5] and FACIAL [11] in Fig. 4. The generated
talking portraits are driven by the audio from different iden-
tities. The results show that the talking heads generated by
AD-NeRF [5] have obvious artifacts at the head-neck junc-
tion, and those generated by FACIAL [11] have less accu-
rate lip movements. In contrast, our method can generate
natural and vivid talking portraits, indicating that it gener-
alizes better to unseen audios.
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