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1. Distinctions of Our Loss
In general, the losses in the event-based motion estima-

tion field can be divided into two categories: the statisti-
cal loss [2] and the registration loss. The classification of
related methods is presented in Tab. 6. For the statistical
losses, e.g., the image variance in CMax [3], the probabilis-
tic likelihood in ST-PPP [4], and the entropy in EMin [8],
they measure the quality of the event alignment based on the
state of the whole events in the batch. For the registration
losses, e.g., the spatio-temporal consistency in STR [5] and
the timestamp consistency in the surface matching (SM)
loss [7], they slice the events as a reference part and a tar-
get part. They measure the quality of the event alignment by
the degree of the registration between these two parts. Since
our TS loss measures the alignment between the later events
and the former events in the TS map, it can be classified as
a registration loss.

Loss Method
statistical CMax, ST-PPP, EMin

registration STR, SM, Ours

Table 6. Classification of related methods based on loss functions.

In STR [5], they conduct the registration in an event-
to-event scheme. They register events individually in the
spatio-temporal domain based on their geometric distance,
which can be expressed as

LSTR(θ) =

Ne/2∑
k=1

∥∥xF (k) −W (xk, tk;θ)
∥∥
2
, (14)

where F (k) returns the index of the closest temporal neigh-
borhood of the event ek. In SM [7], they conduct the regis-
tration in a map-to-map scheme. They crop two patches
from two time-surface maps and register them based on
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their timestamp consistency, which can be expressed as

LSM (θ;p0) =
∑

p∈H(p0)

∥S(p)− S ′(p+ θ ·∆t)∥1 ,

(15)
where ∆t is the time shift between the time-surface map
S and S ′, and p is the pixel in the patch H(p0) centered
at p0. Distinct from these two registration-based methods,
our method performs in an event-to-map scheme that regis-
ters later events in the spatio-temporal domain to the former
events in the TS map based on their temporal information,
which can be expressed as

L(θ) =
∑
ek∈ξs

I (W (xk, tk;θ)) . (16)

Unlike the one-to-one registration in [5, 7], our scheme al-
lows many-to-one registration, i.e., many later events can
register to a single former event. Moreover, the many-to-
one registration can cope with the sampling strategy to re-
duce the computational burden significantly.

2. Derivation of Forward Warping Formula
Rotational model. According to [1], we can use the

Baker-Campbell-Hausdorff (BCH) formula to compound
two matrix exponentials. In the particular case of SO(3),
the BCH formula can be expressed as

ln (R1R2)
∨
= ln

(
exp(ϕ̂1) exp(ϕ̂2)

)∨
(17)

= ϕ1 + ϕ2 + ϕ̂1ϕ2 + · · · ,

where R ∈ SO(3), ϕ̂ ∈ so(3), ln : SO(3) → so(3) is the
matrix logarithm and the operator (·)∨ maps the Lie algebra
to the real vector space. In our rotational model, ϕ is equal
to the rotation angle θ · ∆t. Since the interval ∆t is much
smaller than the value of angular velocities θ, we retain the
first-order term as

ln (R1R2)
∨ ≈ ϕ1 + ϕ2. (18)
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Then the forward warping function of Eq. (9) can be ap-
proximated as

R (tend − tstart;θ) ·R−1 (tk − tstart;θ) (19)

≈ exp
(
θ̂ · (tend − tk)

)
= R (tend − tk;θ) .

6-DOF model. Given a transformation matrix T , we
represent its inverse matrix T −1 as

T −1 =

(
R t
0T 1

)−1

=

(
R−1 −R−1 · t
0T 1

)
. (20)

Then the forward warping transformation in Eq. (13) can
be expressed as

T2T −1
1 =

(
R2R−1

1 −R2R−1
1 · t1 + t2

0T 1

)
, (21)

where T −1
1 = T −1(tk − tstart;θ) backward warps 3D

points from tk to tstart, R1 and t1 = v · (tk − tstart)
are the rotation part and the translation part of T1 , T2 =
T (tend − tstart;θ) forward warps 3D points from tstart to
tend, R2 and t2 = v · (tend − tstart) are the rotation part
and the translation part of T2.

3. Ablations on the Optimization Step and the
Iteration Number

As described in Algorithm 1, our method consists of two
parts: alternately updating the TS map with the latest esti-
mated motion parameters; iteratively optimizing the motion
parameters by minimizing the TS loss. In our experiments,
we empirically set the iteration number T = 2, i.e., creating
the TS map twice, and the optimization step S = 10 in each
iteration.

In Tab. 7, we present an ablation on the optimization
step with the rotational model. For a fair comparison, we
fix the total update number T · S = 20 and follow the
same experimental settings with the dynamic batch size
strategy, 1k event samples, and the bidirectional warping
strategy. It shows that under the same update number, our
method reports higher accuracy with the iterative alignment
scheme, e.g., T = 2, than that without the iterative align-
ment scheme. However, with more iterations but fewer opti-
mization steps, e.g., T = 4 and S = 5, our method reports a
performance degradation. Because in each iteration, a small
optimization step number may be insufficient to make the
parameters converge. Therefore, we set the optimization
step S = 10 in other experiments.

In Tab. 8, we report the estimation results with different
iteration numbers T . We keep the same experimental set-
tings as in Tab. 7, but fix the optimization step S = 10.
It shows that, in general, the accuracy increases with more

T S poster rotation shapes rotation

ew RMSw Time ew RMSw Time

20 1 15.93 23.92 27.9 21.19 34.12 8.1
4 5 15.46 22.87 7.5 19.80 30.62 4.2
2 10 6.87 10.11 4.3 7.17 10.85 3.1
1 20 7.55 11.03 3.9 7.73 11.25 2.8

Table 7. Ablations on the optimization step with the rotational
model. We fix the total update number T · S = 20. Note that
T = 1 means the iterative alignment scheme is not applied.

iterations. With T = 5 iterations, the motion parameters
should reach convergence. Thus it may cause overfitting
when we keep updating the TS map, e.g., T = 10. Con-
sidering the tradeoff between the processing time and the
accuracy, T = 2 and S = 10 are the default values in our
method.

4. Visual Results

In Fig. 4, we present the qualitative results of the aligned
event frames of different motion estimation methods in the
Event-Camera dataset [6]. In the poster rotation sequence,
these methods show relatively close alignment results. In
the shapes rotation sequence, the fixed batch size of 30k
events in CMax and ST-PPP can not adapt to the scene tex-
ture changes, leading to the misalignment of events.
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Figure 4. Visual results of the aligned event frames of different
methods in the rotational motion estimation task.

5. Video Demonstration

We provide a visual demonstration of our framework
with the 6-DOF model in the indoor flying sequence
[10], which is available at https://drive.google.
com / file / d / 1k96ixW2e9eN _ TFSDhkHH - 45 _
ltzsHITa/view?usp=share_link. Note that our
results are acquired in the real-time mode while AEMin can
not achieve the real-time implementation.

https://drive.google.com/file/d/1k96ixW2e9eN_TFSDhkHH-45_ltzsHITa/view?usp=share_link
https://drive.google.com/file/d/1k96ixW2e9eN_TFSDhkHH-45_ltzsHITa/view?usp=share_link
https://drive.google.com/file/d/1k96ixW2e9eN_TFSDhkHH-45_ltzsHITa/view?usp=share_link


T S poster rotation shapes rotation

ew RMSw Time ew RMSw Time

1 10 7.92 11.13 3.4 8.20 11.92 2.2
2 10 6.87 10.11 4.3 7.17 10.85 3.1
5 10 6.80 10.02 13.2 7.16 10.62 7.7

10 10 6.81 10.10 25.5 7.18 10.63 14.5

Table 8. Ablations on the iteration number with the rotational
model. The optimization step is fixed to 10. Note that T = 1
means the iterative alignment scheme is not applied.
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Figure 5. Visual results of our method in optical flow and depth
estimation tasks.
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Figure 6. Schematic diagram of our depth estimation method.

6. More Applications
Except the motion estimation task, our method has the

potential to solve other problems. We summarize core pro-
cedures to apply our method in the following. We also
conduct experiments and show qualitative results for opti-
cal flow/depth estimation.

a) optical flow estimation. The optical flow motion
satisfies the 2D motion model. We can use our method
to derive dense optical flow estimation following routines
in [9]. We provide the visual results of our method in the
infoor flying1 sequence of the MVSEC dataset [10], shown
in Fig. 5. Note that the estimated flow of CMax may col-
lapse due to the aperture problem.

b) depth estimation. To estimate the depth of the scene,
we construct several TS maps along the camera trajectory,
as shown in Fig. 6. It is assumed that the camera poses are
already known. We start by selecting an event and interpo-
lating its pose according to its timestamp. We then iterate all
possible depth values and warp the event to these TS maps
using a 6-DOF motion model. We sum the warped pixel
values of the event at each TS map, i.e., the TS loss of this
event. The best depth value should correspond to the mini-
mum TS loss. Fig. 5 shows our depth estimation results of
the slider depth sequence in the Event-Camera dataset [6]
Note that this process can be performed progressively, i.e.,
the TS map can be updated based on the latest estimated
depth value with our 6-DOF model. Additionally, when a
good initial depth value is available, depth estimation can
be performed using optimization methods instead of brute-
force search.
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