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In this supplementary material, we show additional quantitative (Section A) and qualitative (Section B) comparisons with
the state-of-the-art image style transfer methods for different task settings. Section C presents more examples and user study
results of our Artistic Style Transfer Confusion Test.

A. More Quantitative Comparisons
We quantitatively compare our method with the state-of-the-art methods for three different settings: artwork-to-artwork

(Table A), photo-to-photo (Table B), and artwork-to-photo (Table C). Tables A and B show that our QuantArt(1,1) framework
achieves the best FID and ArtFID scores on both settings, which is consistent with the quantitative result of the photo-to-
artwork task shown in the paper. The consistent results in different settings reinforce our finding that feature quantization
can lead to a higher visual fidelity in image style transfer. QuantArt(0,1) has a lower Gram loss than QuantArt(1,1) because
the visual and style fidelities are orthogonal transfer directions in some cases. To this end, we introduce a stronger control
ability to the proposed framework, where the user can easily control the trade-off between visual, style, and content fidelities
by adjusting the parameters α and β.

For the artwork-to-photo task, following Art2Real [14], we do not adopt the style reference, such that the task is formu-
lated as an unpaired image translation problem. We train an SGA module that takes the feature of an artwork image as the
content input. The second attention block in SGA is replaced with a self-attention block. We compare our method with
CycleGAN [17], CUT [12], DRIT [6] and Art2Real [14], where CycleGAN [17], CUT [12] and DRIT [6] are benchmark
methods for unpaired image translation, and Art2Real [14] is the algorithm specially designed for artwork-to-photo trans-
lation. Table C shows that our QuantArt framework can achieve decent performance without special modification for the
artwork-to-photo task, since it directly fetches photorealism patch representations from the learned photo codebook.

B. More Qualitative Results
Figs. A and B show more examples of artwork-to-artwork image style transfer. Fig. C shows more examples of photo-to-

photo image style transfer. Fig. D shows more examples of artwork-to-photo image style transfer. Figs. E, F, G, H, I show
more examples of photo-to-artwork image style transfer.

C. Examples of Artistic Style Transfer Confusion Test
We present all 36 examples and corresponding user feedbacks of our Artistic Style Transfer Confusion Test in Figs. J,

K, L, M, N, and O. The ratios of correct selections with respect to individual examples range from 19.4% to 76.5% with an
overall average of 51.6%. The results indicate that our QuantArt method can generate highly realistic artistic images, and
most of the generations are difficult for humans to identify from the real artworks.
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Figure A. More artwork-to-artwork style transfer results by the state-of-the-art methods.
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Figure B. More artwork-to-artwork style transfer results by the state-of-the-art methods.
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Figure C. More photo-to-photo style transfer results by the state-of-the-art methods.
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Figure D. More artwork-to-photo style transfer results by the state-of-the-art methods.
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Figure E. More face-to-artwork style transfer results by the state-of-the-art methods.
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Figure F. More photo-to-artwork style transfer results by the state-of-the-art methods.
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Figure G. More photo-to-artwork style transfer results by the state-of-the-art methods.
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Figure H. More photo-to-artwork style transfer results by the state-of-the-art methods.
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Figure I. More photo-to-artwork style transfer results by the state-of-the-art methods.
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Figure J. Examples of artistic confusion test (1/6). The figures are sorted in an ascending order of the ratios of users choosing the real
artwork.
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Figure K. Examples of artistic confusion test (2/6). The figures are sorted in an ascending order of the ratios of users choosing the real
artwork.
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Figure L. Examples of artistic confusion test (3/6). The figures are sorted in an ascending order of the ratios of users choosing the real
artwork.
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Figure M. Examples of artistic confusion test (4/6). The figures are sorted in an ascending order of the ratios of users choosing the real
artwork.
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Figure N. Examples of artistic confusion test (5/6). The figures are sorted in an ascending order of the ratios of users choosing the real
artwork.
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Figure O. Examples of artistic confusion test (6/6). The figures are sorted in an ascending order of the ratios of users choosing the real
artwork.


