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A. Appendix

A.1. Background and Related Work Continued

Adversarial white-box attacks. Since the first demonstra-
tion that high-performant DNNs are vulnerable to small per-
turbations in inputs (a.k.a. adversarial examples) [26], a
plethora of efforts have been devoted to crafting stronger
adversarial examples (AEs) – fast gradient sign method
(FGSM) [9] is one of the earliest methods that applies a
single gradient step to generate AEs; projected gradient de-
scent (PGD) [21] is a widely studied method that performs
well in most cases while being computationally efficient;
Carlini & Wagner (CW) [1] introduced an alternative loss
that exhibits strong attack performance; AutoAttack (AA)
[5] is an aggregated attack formed from an ensemble of four
complementary attacks.

Relation to existing works based on NAS. Several recent
works sought to find more robust DNN architectures via
neural architecture search (NAS) – Guo et al. applied a one-
shot NAS algorithm to design the topology of a cell struc-
ture (i.e., operations and connections among them) while
leaving the network skeleton (i.e., width and depth) to hu-
man designs [11]; Mok et al. incorporated the smoothness
of a DNN model’s input loss landscape as an additional reg-
ularizer for NAS [22], among others [4, 19, 23].

These NAS-based prior arts are limited in the following
three aspects: (1) they focus on only one aspect of architec-
ture (i.e., block topology) while leaving other components
(e.g., activation, network depth, and width, etc.) to human
designs; (2) they treat the design of an adversarially robust
architecture as a black-box search problem where minimal
architectural insights can be derived; (3) NAS is computa-
tionally expensive and adversarial training makes this chal-
lenge especially acute.

In contrast, this work presents (i) a holistic study of dif-
ferent aspects of architecture, including block topology, ac-
tivation, normalization, and scaling factors (i.e., network
depth and width); (ii) through controlled and fine-grained
experiments, we deliver precise knowledge on the impacts

of these choices; (iii) empirically, we demonstrate that the
network assembled on top of our derived knowledge outper-
forms existing networks designed via NAS by at least 2.5%
robust accuracy against CW40 (see Table 2 in the main pa-
per).
Relation to other existing works. There are recent works
that aim to gain an understanding of adversarial robust-
ness from an architectural perspective [3, 6, 10, 16, 32, 35].
Among them, [16] is most closely related to this paper. Ac-
cordingly, we provide an elaborated discussion on the re-
lation to [16] below and refer readers to the Related Work
section in §2 for an overview of these methods.

Huang et al. [16] also investigated the impact of net-
work width and depth via controlled experiments on the ad-
versarial robustness of adversarially trained DNN models.
Despite a similar motivation, our work is primarily differ-
ent and enhanced in the following aspects:

1. Huang et al. only study network scaling factors (i.e.,
depth and width), while we study both block topol-
ogy and network scaling. And as we demonstrated in
this paper, both are critical architectural components
for improving adversarial robustness. Specifically, we
show that (i) improvement on block topology alone
leads to ∼ 3% more robust accuracy; (ii) improvement
on network scaling alone leads to ∼ 2.5% more ro-
bust accuracy; (iii) improvement on both block topol-
ogy and network scaling leads to 3.5 +% more robust
accuracy while being ∼ 2× more compact in terms
of parameters. All results were evaluated against Au-
toAttack and relative to WRNs, the de-facto model for
studying adversarial robustness.

2. Huang et al. explored the interplay between network
depth and width but observed that the independent
scaling rules they identified for depth and width did
not work well together and ultimately failed to de-
sign a compound rule to scale depth and width simul-
taneously1. In contrast, building upon our indepen-

1For more details, please refer to Section 4.3 in [16].
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Design Explanation

(a) Standard SE Place the SE module posterior to the main components of the residual block as proposed in [15].
(b) Pre-SE Place the SE module a priori, i.e., before the main components of the residual block, also tried by [15].
(c) Identity-SE Place the SE module in the skip-connection branch, also tried by [15].
(d) Conv3x3-SE Place the SE module right after the 3× 3 convolution, as done in MobileNetV3 [14].

(e) Residual SE (ours)
Add an extra skip connection around the SE module to the standard SE integration design,
similarly to the FSM module from [17].

(f)

Design Reduction
ratio

#P (M) #F (G) Clean Acc. (%) Robust Acc. (%)
PGD20 CW40

w/o SE – 265 39.0 85.47 57.49 55.07
Standard SE

r = 16

296 39.1 84.56 (-0.91) 56.87 (-0.62) 54.52 (-0.55)
Conv3×3-SE 273 39.1 85.26 (-0.21) 57.10 (-0.39) 54.77 (-0.40)
Identity-SE 293 39.1 85.20 (-0.27) 57.04 (-0.45) 54.94 (-0.13)
Pre-SE 293 39.1 85.81 (+0.34) 57.31 (-0.18) 55.32 (+0.25)

Residual SE (ours)
r = 16 296 39.1 85.75 (+0.28) 57.86 (+0.37) 55.95 (+0.88)
r = 32 281 39.1 85.22 (-0.25) 57.98 (+0.49) 55.54 (+0.47)
r = 64 273 39.1 85.61 (+0.14) 57.77 (+0.28) 56.05 (+0.98)
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Figure 1. (a) - (e) An overview of SE integration designs studied in this work. (f) Description and (g) ablation results of the SE integration
designs are shown in (a) - (e). (h) Comparing residual blocks with and without the proposed residual SE on CIFAR-10 against PGD20

attack.

dent scaling rules, we identify an effective compound
rule to simultaneously scale depth and width by prop-
erly distributing a given computational budget (e.g.,
FLOPs) over the number of layers and their width mul-
tipliers2. Empirically, we demonstrate that the com-
pound scaling rule further improves independent scal-
ing of depth and width by ∼ 2% and ∼ 1% more
robust accuracy against CW 40 attack for a small-
capacity model, respectively (see Figure 9 in the main
paper).

3. The scaling rule identified by Huang et al. was
evaluated at one model capacity only (i.e., ∼ 68M
#Params), while, in this work, we demonstrate the ef-
ficacy of our scaling rules (i.e., both independent and
compound scaling rules) across a broad spectrum of
model-capacities, from 5M to 270M #Params.

4. Performance-wise, on top of using almost 2×
fewer #Params and #FLOPs, our model (i.e.,
RobustResNet-A2) consistently exhibits 1.4% - 2.4%
higher robust accuracy over the model (i.e., WRN-34-
R) scaled by Huang et al. across multiple datasets,

2See Section 4.22 in the main paper for more details.

attacks, and training settings.

Summary. To summarize, unlike this paper, none of the
aforementioned prior works holistically study the impact of
architectural components, i.e., block structure and network
scaling, on adversarial robustness.

A.2. Extended Description of SE

In this section, we first provide pictorial illustrations and
descriptions of the five variations of SE that we tried in Fig-
ure 1a - 1e and Table 1f, respectively. Then, we provide ad-
ditional results comparing our proposed residual SE among
the five variations of SE in Table 1g. Our residual SE is a
simple yet effective variant of the standard SE that improves
adversarial robustness while all other variants fail. Finally,
we present the effect of incorporating our residual SE to
both basic and bottleneck residual blocks in Figure 1h.

A.3. Additional Results of Block Topology

In this section, we first provide a visual comparison be-
tween post-activation and pre-activation in Figure 2a, where
the standard post-activation [12] places the activation func-
tion after the weights. In contrast, the pre-activation pro-
posed by [13] places the activation function before the



weights. Then, we compare the effectiveness of these two
arrangements of activation for a non-residual block (i.e.,
VGG block) on CIFAR-10 in Figure 2b, followed by com-
parison over variants of residual blocks with pre-activation
on CIFAR-10 against PGD20 attack in Figure 2c.

(a) Post-activation (top) and Pre-activation (bottom)

(b) Non-residual block (c) Comparison under PGD20

Figure 2. (a) A pictorial illustration of the standard post-activation
(Top) and pre-activation arrangements (Bottom). (b) Comparing
post- and pre-activation for a non-residual block (i.e., VGG block)
on CIFAR-10. (c) Comparison among variants of a residual block
with pre-activation on CIFAR-10 against PGD20 attack.

A.4. Additional Results of Aggregated and Hierar­
chical Convolutions

This section presents pictorial illustrations of aggregated
and hierarchical convolutions in Figures 3a and 4a, respec-
tively. Additional results showing the effects of hyperpa-
rameters cardinality (for aggregated convolution) and scales
(for hierarchical convolution) are presented in Figures 3 (b,
c, d) and 4 (b, c, d). Finally, we show the impact of aggre-
gated convolution for the basic block in Figure 5, where we
observe that aggregated convolution adversely affects the
robustness of the basic block.

A.5. Impact of Normalization

This section investigates the relationship between nor-
malization methods and adversarial robustness. In addition
to the baseline of Batch Normalization (BN), we consider
three other normalization methods, i.e., Group Normaliza-
tion (GN) [31], and Instance Normalization (IN) [28]. We
also con�ne all blocks in a DNN model to use a single
choice of normalization method and repeat the experiment
for each technique three times. The experimental results are
summarized in Table 1. The baseline normalization method
(i.e., BN) outperforms all other alternative normalization
methods, particularly on Tiny-ImageNet.

(a) Aggregated convolution (b) D i = 5 ; W i = 12

(c) D i = 7 ; W i = 14 (d) D i = 11 ; W i = 16

Figure 3. (a) Aggregated convolution that splits a regular convo-
lution into multiple parallel convolutions (cardinality). Results are
then concatenated. (b, c, d) show the robustness of models from
three different capacity regions.

(a) Hierarchical convolution (b) D i = 5 ; W i = 12

(c) D i = 7 ; W i = 14 (d) D i = 11 ; W i = 16

Figure 4. (a) Hierarchical convolution that splits a regular convolu-
tion into multiple hierarchically connected convolutions (scales).
Results are then concatenated. (b, c, d) show the robustness of
models from three different capacity regions.

(a) PGD20 (b) CW40

Figure 5. The impact of aggregated convolution for the basic
block. Results show the robustness of the model withD i =
4; Wi = 10 .



Table 1. The adversarial robustness of the considered normalization methods. We highlight the best results of each section in bold.

CIFAR-10 CIFAR-100 Tiny-ImageNet Ave.
RankNat. PGD20 CW40 AA Nat. PGD20 CW40 AA Nat. PGD20 AA

BN 85.11 55.36 53.02 51.43 55.77 29.91 26.23 25.35 42.09 20.68 16.25 1.5
GN 85.28 55.82 52.76 51.23 56.60 29.86 26.26 25.09 30.99 16.87 13.01 1.7
IN 85.34 54.49 50.82 49.34 56.56 28.41 24.17 22.68 17.25 10.69 8.18 2.7

(a) CIFAR-10, FGSM (b) CIFAR-10, PGD20 (c) CIFAR-10, CW40 (d) CIFAR-10, AutoAttack

(e) CIFAR-100, FGSM (f) CIFAR-100, PGD20 (g) CIFAR-100, CW40 (h) CIFAR-100, AutoAttack

(i) Tiny-ImageNet, FGSM (j) Tiny-ImageNet, PGD20 (k) Tiny-ImageNet, CW40 (l) Tiny-ImageNet, AutoAttack

Figure 6. Heat maps visualizing the relationship between kernel sizes and adversarial robustness on CIFAR-10, CIFAR-100, and Tiny-
ImageNet (from top to bottom) against FGSM, PGD20 , CW40 , and AutoAttack (from left to right).

(a) CIFAR-10, FGSM (b) CIFAR-10, PGD20 (c) CIFAR-10, CW40 (d) CIFAR-10, AutoAttack

(e) Tiny-ImageNet, FGSM (f) Tiny-ImageNet, PGD20 (g) Tiny-ImageNet, CW40 (h) Tiny-ImageNet, AutoAttack

Figure 7. The adversarial robustness of different kernel sizes for higher resolution images on CIFAR-10 (Top) and Tiny-ImageNet (Bottom)
against FGSM, PGD20 , CW40 , and AutoAttack (from left to right).


