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In the supplementary material, we first provide the details in the proof for the theoretical result in the main paper in
Section. A. Then, we give details about our implementation details in Section B. Finally, we show more experimental results
using different types of corruptions in Section C.

A. Convergence Analyses
A.1. Preliminaries
We first give some notations before we start our proof for the convergence.

1. We denote the expectation value for the loss function as (6, w) := E(, )~ L(0,w; (z,y)), and so as the SAM function
that R(0,w) = E(;)~qR(0,w; (z,y)). So our objective can be turned into: ming{max,, L(6,w)} + R(#,w). And
recalling our SharpDRO algorithm, we restate the meaning of the parameters: the model is parameterized by 6 and w
means the weighted sampling.

2. k is the condition number that x = ﬁ, where [ is the Lipschitz-smoothness in Assumption A.2 and p means the PL
condition in Assumption A.3.

3. We define L*(0) = max,, L(6,w) and w*(0) = arg max, L(6,w).
A.2. Update Rule

Before our theoretical analyses, we need to make the update rule for each variable explicit. We have to pay attention to the

fact that our algorithm is stochastic that we can not directly get the real value of the gradient VIL(6, w), rather we estimate

it by batches of samples gg(0,w) = 2 Zi\il %(0, w; (27, 1;)) and g, (0, w) = & Zf\il %(G,w; (24,y:)), who hold some

properties we will introduce in Assumption A.1. So the optimization iteration is executed as follows in reality:

Orr1 =0t —n0go(0: + pgo(0r, we),wr);

(N
Wit1 = Wt + N Vo (0, we).

We further give a notation for brief that 0, /5 2 0, + pge (s, w), so the update for 6 can be simplified as: 6;,1 =
0r — n6ge (01172, W)
A.3. Assumptions

We also have to make some necessary assumptions on our problem setting for this convergence proof:

Assumption A.1 (Bounded variance). The unbiased estimation about the gradient of the loss function also has bounded
variance that:
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Remark. Since gy and g, are the averaged samples that: g9 = ﬁ wal %g (0,w; (x4,9:)) and g, =
ﬁ wal gf (0, w; (x;,y;)) respectively, they also have the unbiased property and have bounded variance:
2
o
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Assumption A.2 (Lipschitz smooth). £(0,w; (x,y)) is differential and l-Lipschitz smooth for every given sample (z,vy):
VoL (01, w; (z,y)) = VoL(b2, w; (z,y))| < 1|61 — 2], Vo, (2,y);
IVLL(0,w1; (2,y)) = Vo L(0, wo; (z,y))|| < lflwr — w2, VO, (z,y).
Remark. So the expectation function 1L also have the Lipschitz smooth property that:
[VoL(61,w) — VoL(02,w)|| < E[|[VoL(61,w; (z,y)) — VoL(b2,w; (z,y))[| < U[|61 — b2, Vw;
VoL, w1) = Vo L(8, wa) || < E[[VuL(0, wi; (,9)) = Vo L(f,wa; (z,9))]| < lllwr — w2, V0.

Assumption A.3 (PL condition). The loss function 1L(0, -) satisfies PL condition on every given 0, i.e., there exists 1 > 0 such
that |V ,L(0,w)||? > 2u[max, L(§,w) — L(0,w)], V0, w.

A 4. Useful Lemmas

In this part, we will prove some necessary lemmas for us to prove the convergence bound. And we will give the definition
of the stationary point of our problem at the beginning.

Definition A.1 (Stationary measure). 0 is defined as the e-stationary point of our problem if E||VIL*(0)|| < € for any ¢ > 0.

Remark. For minmax problem, there are usually two ways to measure the stationary point. The other one is measured
two-side that: when E||VoL(0,w)| < € and E||V,L(6,w)| < ¢ we claim (6,w) is the (¢, €)-stationary point. It has been
proved in [4] that these two measures can be translated into each other when IL* is smooth which will be shown in Lemma A. 1.
But what we compute is the model parameter 6 using the algorithm SharpDRO. So we choose the measure by E||L*(0)|| here.

Lemma A.1. [3] Under Assumption A.2 and A.3, L*(0) is (I + %)—Lipschitz smooth with the gradient:
V@L* (9, w) = V@L(& w*(e))
Lemma A.2. [3] Under Assumption A.2 and A.3, w*(-) is smooth about its variable:

l
lw*(01) — w*(62)]| < ﬁ”‘gl —6s]|, Vbi,6-.

Lemma A.3. We give an estimation that E|| gg(0;11/2,w:)||* < (4p%1% 4 2pl + 2)E||VoLL(0y, we)||* + (50%1% + 2)0M
Proof.
Ellgo(Oes1/2, wi)I> = —E[IVoL(, wi) I + Ellgo (04172, we) — VoLi(by, wi)I” + 2E(go (014172, wt), VoLi(fr,wy)). (2)
For the cross-product term, we divide it as follows:
E(gg(0r+1/2, we), Vol(0r, wy))
= E(go (014172, wt) — 9o (0: + pVol(0r, wi), wi), Vol (0, wi)) + E(ge(0: + pVolL(0s, wi), wi), VolL(0y, wi))
= E(VoL(0s41/2,wt) — Vol(0; + pVolL(0s, wi), wi), Val(0r,wi)) + E(VoIL(0; + pVol(0r, wi), wi), VolL(0:, wi))
< LEIVILGir2:0)  ToLlOe + pTL(Brr0), I+ SEIVOLG:, w0l + ENVoL(6,, )7
+E(VL(0, + pVoL(8,wr), i) — Vll(61, 0), VoL(6r,w0)

(i) p?[? 3
< LEng(é’t,wt) VoL (01, w0)[* + SEIVeL (6, wo)|* + pIE[[VoL(0r,wi)]|*
(44) 2l20'2

3
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where the inequality (¢) is due to the Cauchy-Schwarz inequality; the inequality (i%) is because of the Lipschitz-smoothness
of L that E||VgIL(0;11/2, we) — VoL(bs + pVeL(0y,wi),w)||* < IPE||011/2 — 0 — pVel(6:,w;)||* and the property of
Lipschitz-smoothness that (VoIL(0; + pVoLL(6,wt),wi) — VoL(0, we), VoL(0:,we)) = %(V.g]L(Gt + pVoL (0, we), we) —
VoL (0, wt), pVoL(0s,we)) < %HpVg}L(@t, w¢)||?; and the inequality (iii) makes use of the Assumption A.1.

As for the second term, we have:

E|‘99(9t+1/27wt) - V@L(Qt,wt)HQ
< 2E||99(0t+1/2awt) - VOL(9t+1/27wt)||2 + 2E|\V9L(9t+1/2’wt) - VGL(etawt)Hz
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where the last inequality comes from the fact that: E|[gg (6, w;)||? < 2E||go (0, wi) — VolL(0y, wi)||? + 2E||VaL(8;, wy) ||
By combining the above inequalities, we can get:

E|lgo (011172, we)|[> < (4p%12 + 2pl + 2)E||VoL(0, we) |12 + (5712 + z)UMQ. (5)
O
Lemma A.4. For the descending relationship of the function L*, we have:
E[L*(6:41)] < E[L*(6¢)] — %(1 — 5pl — 2Lng(4p%1° + 2pl + 2))E[[ VL*(8,) ||
+ [%"(1 + %pl) + Lz (4p%1% 4 2pl + 2)|E||VL* (6;) — VoLL(0s, w;)||? + (50%1% + 2) L;@Q\;Q,
where we use the brief notation that L = [ + %‘
Proof. Since L*(0) is (I + % )-Lipschitz smooth according to Lemma A.1, we have:
L*(0e41) < L7(0:) + (VL(01), 011 — 01) + %(l + %{)Hatﬂ — 0,7 ©
=L"(6) —no(VL"(01), 90 (Or41/2,we)) + %(l + lg)ﬁg\\ge(9t+1/27wt)||2~
Taking expectation conditioned on (;,w;) and we get:
E[L*(0r41)[0r, wi] < L*(0:) — mo(VL"(01), Voli(0s 4172, wt)) + %(l + lg)’lgE[ng(atﬂ/z,wt)||2|9t,wt}- (7

We again take expectation on both side on above inequality so we have:

1 l
E[L*(041)] < E[L*(0;)] — neE(VL*(01), VoL(0141/2,wt)) + 5(1 + g)ﬂgE||90(9t+1/2aWt)||2~ (3)



For the second term, we decompose it as follows:

]E<VL*(‘9t) VHL(9t+1/2awt)>
= E<VL*(0t) ]L(H wt) —|— Vg]L(GtH/g,wt) — Vg]L(Ht,wt»
> E(VL*(0;), VoL (01, wr)) — E|VL*(0) [ VoL(0y11/2, wi) — VoL (01, wi)||
> E(VL*(0;), VolL(6:, wi)) — plE[|VILT(61)]|[lg6 (67, wy )|
> E(VL*(0,), VL*(@) + Vol(6r, we) — VIL™(61)) — plE[ VL (0) [ (IVoL(0r, wi) | + llgo (0, wi) — ViolL(0, i) )
1
> E||VL* (6,)]* - EIIVL*(9t)||2 = EIVL (0, wr) = VI (0,)]* = plE[ VL (00) [ VoL (02, or)|
1 1
= PIEIVL (00| = 5 pIEl|go (61, we) — VoL(0s,w0)*
1—pl 1 lo?
> =B |VL* (6) 2 = SEIVeL(0r,wr) — VL*(6) |2 = pIE[ VL B[ VoL(Br, )| — S
(€))
We continue estimating the last term in above inequality 9
E[[VLT(6:) [ VoL (6:, wi )|
= E[[VL*(0:) [ VoL(0:, wi) — VIL(6:) + VL (6:) |
< E[VL*(6)]1* + E[IVL* () [ VolL(6:, wi) — VL*(6,) | (10)
(@) 1
< E[VL*(00)|* + E[ VL (00)* + JEI VoL (0, wr) = VL*(6,)]%,
where the last inequality (7) is due to Young’s inequality.
By combining inequality 8 with 10, we can get:
E<VL* (9,5), VOL(9t+1/27 wt)>
1—pl 1 l lo?
> =LE (VLY (6) 2 = SEIIVeL(:,wr) — VL*(60) |2 = 2pIE[ VL (6,)]* — SB[ VoL(6:,w1) — VL*(6)]* - £
_ 1 * 2 1 1 * 2 plaz
= (1= SpDE| VL @) = 5(1+ 5p)E|[VL*(6) = VoL (Br,w0)|* - 2. o
Finally, we combine inequality 8 with Lemma A.3 and inequality 11:
E[L*(6+1)]
< E[L*(0,)] - 7726(1 — 5p)E[[ VL (6:)]* + (1 + pl)EHVL*(Gt) VoL (6, we)||?
1 Ik, o 272 2 272 o
+ §(l+ 5)779((4/) 17+ 2pl + 2)E|[[VoL(0:, wy)||” + (5p71 +2)M) (12)

Nw =

EL*(6,)] — (1 — 5pl — ng (21 + 1) (4p*1 + 2pl + 2))E[|[ VL (6,)]|2

2
1 Ik . 1 Ik 202
+ (B4 300 + 7+ ) (4212 + 200 + 2)|E[[ VL () = VoL (8o, w)|* + 51+ 5)(56% +2) 2,
where the last inequality (i) uses the Cauchy-Schwarz inequality that ||VoIL(0;, w;)[|? < 2||VL*(0) || + 2||VeL(8s, w;) —
VIL*(6:)]1*.
A.S. Theorem

Theorem 1. UnderAssumption A.1,A.2,A.3, and the learning rate satisfy that ng < min{ g2, \/M(E[L* (80)] —ming E[L" (0)]) h

132T k%102

< 64r%ng and p < o7, we have the convergence bound for our problem:

= K * — min * o K2



Proof. First recall the descending relationship of the function L* in Lemma A .4:

E[L" (6+1)]

7]
< E[L*(6))) — 5 (1 = 5pl — 2Lng(4p*12 + 2pl + 2))E[[ VL* (6| a4

Ln}o?

[”"<1+ 50) + Lnf (40°12 + 2l + D]E VL (6,) — VoL(0r, we)|2 + (5052 +2) = .

Then, using the smoothness of the variables 6 and w respectively, we can get:
l
L(0rr1,00) 2 L0, wi) + (VoL(0r, wi), Oryr — Or) — S [|0r41 — 0.1
l
L(0rr1,wi1) 2 L(Or1, wi) + (Voli(Brpr, we), wpr — wr) = S llwesr = wel®.

Taking expectation we can get:

l 2
E[L(O¢41,wt)] > E[L(0r, wi)] — noE(VoL(0r, wt), VoL(0r41/2, wt)) — %E||99(9t+1/27wt)”2

E[L(6;,w)] — 16E[| VoL (8, wi)||* — %EHVGL(@MQHQ
Mo 2 5773 2
- ?EHVQL(QHI/%W:‘,) — VolL(0s,ws)[|” — TEHQG(@H/%M)H

3ne In?
> B{L(Frw0)] — EIVoLG )~ B 00, 0) 2 — g (0111/2,00)

P 2
> E[L(0h,wr)] — (5 + L + 0 (2012 + pl + 1) E||VoL(0s, wr)
2

I*p°ne 1773 272 g
— 2o 2)) -
(2 4 (52 4 2) T

l 2
EIL(0e1,w041)] 2 BIL(E1,00] + 0E(VuL (O, 00), VL (01 0)) = =2 Ell g (60,00

> E[L(0r41,01)] + SB[ VuL(0h,w0)|* = EEIVuL(Brr1,w) = VuL(Bh,w)[2 = 2Bl g (61, w0) |
2 77977w 2 g 2
E[L(9t+1»wf)]+ EHV L0y, wi)I” — —5—Ellga (0512, we)[|” — > —2E||gw (0, wy)||

o U
> E[L(f1,w1)] + (% - l)ﬂznvwwt,won? — (g (20°12 + pl + 1)) E|| VLi(0s, we)
2

2 Wi - 2,
*(2+ (5pl+2))M
(15)

Then we construct a potential function in the same way as [4]:
Vi =V (0r,wi) = L*(0;) + a[L"(0:) — L(6:, wi)],

where a > 0 is a preset parameter. Then we come to evaluate the descending relationship of the potential function V;.
Combining the above inequalities we can get the descending relationship of the potential function:

E[Vi1] — E[VF]
= (1+ @) (E[L" (B141)] — EL"(6)]) — a(EL(Br11,wes1)] — EIL(6:, wr)))
< (1+ a){= 5 (1 = 5pl — 2Ligo (4p%1* + 2l + 2))E|[VL* (0,) |

Ln}o? !
2M

ln
9 (5p°1 + 2))M

[”"(H 5P1) + L (49%1% + 20 + 2) [E[[ VL* (6,) — vgwt,wan + (50702 +2) 7087

1%p
2

l\')

3779 12p%ng
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w lw lw l W 02
(B = M L0, 0) P = (1, (26%1% 4+ pl+ )BT LG P — (2 + P2 (5,22 4 )T 16)

= f—(l +a)(1 — 5pl — 2Lne(4p*1% + 2pl + 2))E||VL*(6,) |
1
+ (1+ @) (5 (1 + 5 pl) + L (4912 + 2L + 2))E|[VL* (6:) — VoL (01, )|

o3, L 2p2ng
9 9

N Ing
- (3 - 7)EHV L (0, wy)||?

+ g (2p%1% + pl + 1)) + lngn. (20°1 + pl + 1)]E|| VL (6, wy) |2

L 2pne 2 2. 2
L0+ ) (a2 + )2y o ”9 (50712 +2)) + o~ D00 (5,22 1 9))1 7
2 2 2 2 M
< ("1 1 0)(1 = 5pl — 2Lng (49 + 201 + 2)) — 20| B0 1200212 4+ pl+ 1)) + In2nu (20%12 + pl + 1
<3 a)(1 = 5p 1o (4p"1" + 2pl +2)) = 2a[(=7 + —5— + g (20" + pl + 1)) + I (2p°1 + pl + 1)]}
E|[[VL*(6:)?
{010+ o) 1 L + 201+ 2)) + 2031 £ I 20022 4 gl 1)) 4 2 0% + pl+ 1)}
5 (14 50l) + L (4p p 5 5 15 (20%1% + p Tomw (20712 + p
E||VL*(6:) — VoL (6, wy)||?
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—M%—iﬂWL@MW
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[0+ @)% + DL+ a(E + (5022 +2) + (2 + T (502 4 2))] T 17)

Since we have the following property according to Lemma A.1 and the PL condition A.3:
VL (0:) — Vo f(0r, we)|| < U|w™(6r) — well < &[|Veo f (0, wr)]]-

So we can further the above inequality as follows:

E[Vit1] — E[V4]
3 12p?
< {779 (1 + a)(l - 5Pl — 2L779(4p212 + 2pl + 2)) — %2 [( ;’0 + P2770
E[VL* (0]

o - “77‘“) R+ a) (T %pl) + L (4p°1% + 201 + 2))

3ng  12p*ng
o5+ 35

L 12 2 l 2 l 2 l 2 o
P14+ a) (522 +2) =0 2+ af ”2’7‘9+%(5p2z2+2))+a(%+ ”92” (50212 +2))]Z

+ I (20°1 + pl + 1)) + bygn(20°1° + pl + 1)]}

+ 20 + 3 (20° 1% + pl+ 1)) + ngne, (20°1 + pl + D)]JFE|| VL L(0, wr) |2

=%

(13)
Then we require the parameters satisfy: a = 16, pl < L 160 Mo (2pl + 1)2kl < 64, K2nel < 128, p < 2% andn, < 64K2n.
So the inequality can be further simplified as:

E[Vi+1] — E[V4]
« 2 4l -, 2 4 20° (19)
< — G WEIVLE @I — S’ IV f (6wl + 129503 T
Telescoping the above inequality we can get:
= 80 o?
* 2 oY _ 4 — 20
E[[VL*(6:)[1 < T 7 (ELVo] = E[Vr]) + 960n"in 37 (20)

t=0



Further, we can evaluate the first term that:
E[Vo] - E[Vy] < E[Vg] - min B[V (6,)

< E[L*(60)] - minE[L* (6)] + 7o (EIL* (60)] ~ E[L(fo, o))

1
where we denote the initial error as: Ag = E[L*(0y)] — E[L(6o, wo)].
Therefore, the inequality 20 can be further evaluated as:
T—1 2

1 , 80 . 5 W
el * < % * _ * 2 9 21
7 tEZO E||VL*(6)]]” < llngT(E[L (60)] n%lnE[L ) + 11779TA0 + 960%*Ing —, 2D

when we select g = \/ M(EL" (8y)) —ming E[H‘*w)]), and samples can be minibatch, the convergence can be bounded by:

132T k%02
T-1 N
1 oo \/ 3k41(E[L*(6)] — ming E[L*(9)])o2 K2



Table 1. Quantitative comparisons on distribution-aware robust generalization setting. Averaged accuracy (%) with standard deviations are

computed over three independent trails.

Corruption Severity

Dataset Type  Method 0 I > 3 4 5
ERM 90.84+0.01 90.1+0.02 88.1+0.02 88.1+0.02 85.74+0.02 82.6+0.01
IRM 91.14+£0.02 90.7+0.01 89.7+0.02 88.0+£0.03 84.6+0.02 83.2+0.03
Snow REx 91.84+0.02 91.9+0.01 884+0.01 88.3+0.01 88.6+0.01 83.0+0.02
GroupDRO  91.5+0.02 91.04+0.01 88.7+0.02 88.6+0.02 85.24+0.03 83.54+0.02
CIFARI0 SharpDRO  93.1 +£0.01 91.8+0.01 90.5+0.02 90.8+0.02 87.9+0.01 84.3+0.02
ERM 92.5+0.02 91.14+0.02 89.9+0.01 856+0.03 85.7+0.01 78.8+0.01
IRM 90.44+0.01 90.3+0.02 89.4+0.02 86.3+0.01 84.3+0.02 79.1+0.02
Shot  REx 91.14+£0.02 90.6+0.02 90.2+0.03 86.8+0.02 84.7+0.02 80.5+0.01
GroupDRO  92.2+0.01 91.44+0.01 89.4+0.02 84.0+0.01 84.74+0.02 78.34+0.01
SharpDRO  92.4+0.02 91.1+0.02 90.3+0.02 87.5+0.02 86.4+0.02 83.3+0.02
ERM 67.74+0.01 68.1+001 64.7£0.01 63.1+£0.01 60.54+0.02 57.3+£0.01
IRM 69.34+0.01 67.5+0.02 64.9+0.02 61.0+0.01 5824+0.01 55.1+0.01
Snow REx 66.44+0.01 659+001 624+0.01 61.24+0.02 57.54+0.03 56.0+0.02
GroupDRO  68.0£0.02 68.24+0.01 65.1+0.01 60.9+0.03 59.8+0.01 58.1+0.02
CIFAR100 SharpDRO 71.5+0.01 70.8+0.03 67.5+0.02 65.5+0.01 62.3+0.01 59.2+0.03
ERM 67.6+0.03 65.1+0.01 629+0.01 56.0£0.01 55.14+0.01 47.3+0.01
IRM 67.5+0.02 65.7+001 62.7+£0.01 59.5+0.01 55.84+0.01 48.3+0.01
Shot  REx 65.74+0.01 63.8+0.02 61.9+0.01 59.34+0.03 53.84+0.01 48.1+0.01
GroupDRO  67.0£0.02 65.84+0.01 63.1+0.01 589+0.01 57.54+0.01 49.34+0.01
SharpDRO  69.2+0.01 67.3 £0.02 65.4+0.03 62.5+0.01 57.7+0.02 51.6+0.01
ERM 86.7+0.03 85.2+0.01 834+£0.01 81.1£0.01 75.3+0.01 75.6+0.01
IRM 85.6+0.01 84.0+0.02 82.1+0.03 79.7+0.01 75.04+0.01 75.6+0.01
Snow REx 85.44+0.01 84.6+0.02 827+0.02 80.5+£0.03 75.7+0.03 75.9+0.03
GroupDRO  86.7£0.01 85.54+0.03 83.4+0.01 81.2+0.02 76.3+£0.01 76.6+0.01
TmageNet30 SharpDRO  88.2+0.02 88.2+0.01 85.4+0.02 81.9+0.01 79.8+0.03 79.5+0.02
ERM 86.9+0.01 84.8+0.01 83.6+£0.01 79.7£0.01 7544+0.01 64.6+0.01
IRM 86.84+0.01 85.14+0.03 81.5+£0.01 73.5£0.02 68.5+0.03 62.5+0.03
Shot  REx 83.84+0.01 86.3+0.03 825+0.02 73.94+0.01 70.6+0.03 64.0+0.02
GroupDRO  86.7£0.01 85.6+0.03 84.5+0.01 80.7+£0.01 76.2+0.04 65.440.01
SharpDRO  88.1 +0.01 87.2+0.02 84.7+0.01 82.2+0.01 78.2+0.01 67.9+0.02
B. More Details

In this section, we first give a practical implementation of our SharpDRO. Then, we provide more experimental details.

B.1. Practical Implementation

Our SharpDRO requires two backward phases, so the time complexity is twice as much as plain training, for efficient
sharpness computation, please refer to [1,2,6—8]. In the first step, we record the label prediction p of each data during inference
and simultaneously compute the loss £. Additionally, in the first backward pass, we store the computed gradient V.L(6).
Further, by adding €*, we use the perturbed model to compute the second label prediction p, which is further leveraged to
compute the sharpness regularization R. Moreover, in the distribution-agnostic setting, the predictions p and p from two
forward steps are used to compute the OOD score w;. Then, we add the recorded gradient V£ () back to the model parameter
and conduct sharpness minimization over the selected worst-case data. In this way, our SharpDRO can be correctly performed.

B.2. Experimental Details

In our experiments, we choose Wide ResNet-28-2 [5] as our backbone model, using stochastic gradient descent with
learning rate 3e — 2 as the base optimizer. The momentum and weight decay factor of the optimizer is set to 0.9 and 5e — 4,
respectively. We run all experiments for 200 epochs with three independent trials and report the average test accuracy with
standard deviation.



Table 2. Quantitative comparisons on distribution-agnostic robust generalization setting. Averaged accuracy (%) with standard deviations

are computed over three independent trails.

Corruption Severity

Dataset Type  Method 0 I ) 3 4 5
JIT 88.6+0.02 87.8+0.03 86.5+£0.02 87.2+£0.02 84.2+0.02 83.24+0.03
Snow EIIL 88.3+£0.02 87.8+£0.01 85.6+0.02 87.3+£0.03 852+0.04 823=£0.01
CIFAR10 SharpDRO 91.6 +£0.01 91.1+0.02 90.8+0.01 89.7+0.02 86.2+0.01 83.8+0.02
JIT 91.34+£0.02 90.5+0.03 89.3+£0.01 86.5+0.02 83.14+0.02 79.8+0.02
Shot  EIIL 90.3£0.03 90.1+£0.02 88.3+0.01 86.2+0.02 82.3+0.03 785=£0.02
SharpDRO 91.6 +0.01 90.5+0.02 89.8+0.02 88.7+0.01 86.0+0.02 81.7+0.01
JIT 67.5+£0.01 68.1+£0.02 65.3+0.02 64.3+0.02 60.24+0.02 57.8+0.02
Snow EIIL 68.2+£0.03 69.1£0.03 65.2+0.02 64.0+£0.02 61.0+£0.04 57.5+0.04
CIFAR100 SharpDRO 70.6 +=0.02 69.9 +£0.03 66.7+0.03 64.4+0.02 61.9+0.03 60.7+0.03
JIT 66.3+0.02 65.3+0.03 634+£0.02 56.6£0.04 55.5+0.04 48.6+0.04
Shot  EIIL 66.5+£0.02 65.3+£0.03 62.8+0.04 57.5+£0.02 56.5+0.01 49.5£0.01
SharpDRO  68.9 +0.02 66.2 +0.03 64.9+0.03 60.1+0.02 58.4+0.03 52.7+0.02
JIT 86.0+0.04 85.8+0.02 823+£0.03 80.4+0.02 74.6+0.02 73.5+0.02
Snow EIIL 87.5+£0.01 85.4+£0.02 835+0.04 81.6+0.01 76.3+0.01 75.8=+0.02
ImageNet30 SharpDRO 87.5+0.03 86.7+0.02 85.4+0.02 81.5+0.03 78.9+0.02 78.5+0.03
JIT 86.5+0.02 85.4+0.03 826+£0.04 79.6+0.04 77.24+0.04 65.0£0.01
Shot  EIIL 85.5+£0.01 86.3+£0.04 81.6+0.02 80.2+0.03 753+0.02 64.4+0.03
SharpDRO 87.3 +0.02 87.2+0.03 84.6+0.03 83.2+0.06 79.6+0.03 68.0+0.03

C. Additional Experiments

In the main paper, we have provided the results using “Gaussian Noise” corruption and “JPEG compression” corruption,
here we conduct additional experiments to show the effectiveness of SharpDRO under “Snow” and “Shot Noise” corruptions.
The results on CIFAR10, CIFAR100, and ImageNet30 datasets in both distribution-aware and distribution-agnostic scenarios
are shown in Tables 1 and 2. We can see that SharpDRO still performances effectively and surpasses other methods with large
margin. Especially, on ImageNet30 dataset in both two problem settings, SharpDRO outperforms second-best method about
3%, which indicates the capability of SharpDRO on generalization against different corruptions.
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