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Supplementary Materials

We first discuss implementation and experiment details. Next, we present the ablation studies of our approach. Third, we
provide additional analysis of the proposed design. Finally, we include more visual results.

A. Implementation Details

Training details. We use 80k training steps for the rendering hyperparameter search. We include the following rendering
hyperparameters for generating the S-AF data:

e Number of foreground objects

e Scale, rotation, translation, grid strength, grid size of the motion for foreground
Scale, rotation, translation, grid strength, grid size of the motion for background
Probability and strength of the mask blur
Probability and strength of the motion blur
Probability, density and brightness of the fog
Minimum and maximum of the object’s diagonal
Minimum and maximum of the object’s center location
Irregularity and spikiness of the polygon

As for the hyperparameters in the search metric Eq. (2) in the main paper, we use (Wsmooth, Waistin)=(0.6,4) for the
Sintel [1] and the DAVIS dataset [3], and (Wsmooth, Waistin)=(1.2, 8) for the KITTI dataset [2]. We pretrain the model on a
generated S-AF dataset Dy, for 3.2 M iterations for Sintel and 200k iterations for KITTI and DAVIS. We randomly crop
input images to size 368 x496 at training time and use a batch size of 36.

We further fine-tune the model with the self-supervised loss (Eq. (3)) for 12 k iterations on the Sintel dataset, 75 k iterations
on the KITTI dataset, and 100k iterations on the Davis dataset. We further apply the multi-frame fine-tuning on Sintel and
KITTI datasets for 30k iterations (Eq. (4)) with the same parameter setting from SMURF [4]. We randomly crop input
images to size 368 x496 at training time and use a batch size of 8. We use the data augmentations from RAFT [5] including
random cropping, stretching, scaling, flipping, and erasing. As for the photometric augmentations, we randomly adjust the
contrast, saturation, brightness and hue.

Evaluation metrics. We use the average end-point error (AEPE) evaluation metric. For KITTI, we additionally report the
outlier rate (Fl-all), i.e. the ratio (in %) of outlier pixels among all ground truth pixels. If an error of a pixel exceeds the
3-pixel threshold and 5% w.r.t. the ground truth, the pixel is considered as an outlier.

B. Ablation Studies
B.1. Training by individual S-AF dataset and mixed S-AF dataset

As described in Sec. 3.2 and Sec. 4.2, to improve the robustness of the algorithm, we sort the sets of hyperparameters
returned by Self-AutoFlow according to the self-supervised search metric and choose the top-3 hyperparameter sets. We
form our final Self-AutoFlow dataset by equally mixing a set of images generated from each hyperparameter set. For a fair
comparison, we also prepare an equivalent model for AutoFlow, denoted as AF-mix. In addition to the results of training
on the dataset generated by mixing the top-3 hyperparameters in Tab. 1, we report the results of training models on each
individual S-AF and AF dataset in Tab. B.1. The models are trained for 0.2M iterations. We note that the top hyperparameters
sets are selected according to the search, where the model is trained for 40K iterations, and here we report the results of models
trained for 0.2M iterations, so the top-1 hyperparameters might not have the lowest AEPE for AF models.

Unlike supervised AutoFlow, the results of S-AF trained on the top-2 hyperparameters on Sintel Final and S-AF trained
on the top-3 hyperparameters on KITTI show that there is no guarantee that the top candidates returned by self-supervised
AutoFlow are the optimal set of hyperparameters. Mixing the top-3 datasets decreases the likelihood of sampling a set of
poor-performing AutoFlow hyperparameters and improves the robustness of the algorithm.



Table B.1. Training by individual S-AF dataset and mixed S-AF dataset. We show that training on mix-3 datasets decreases the
likelihood of sampling a poor-performing AutoFlow hyperparameters and improves the robustness of the algorithm.

Sintel Clean [ 1] Sintel Final [1] KITTI 2015 [2]
Method top-1  top-2 top-3 mix-3 top-1 top-2 top-3 mix-3 top-1 top-2 top-3 mix-3
AF-mix (0.2M) 2.11 218 210  2.18 2.85 283 282 2.83 470 435 458 443
S-AF (0.2M) 216 214 213 222 283 293 284 2.84 465 406 540 458

B.2. Sequence losses in the search metric of S-AF

In Sec. 3.2, we mention that since there is no backpropagation to the model in the search of AutoFlow, the search metric
uses only the final flow prediction of RAFT instead of all intermediate. In Fig. B.1, we conduct a study using the intermediate
predictions of RAFT to compute the search metric. Specifically, we compute the search metric once for each intermediate
prediction and we exponentially decay the weight for earlier predictions [4]. Since the search metric is computed at the
original resolution of the target data, we use at most the last four predictions due to memory constraints.

We conduct the S-AF search using last-1 prediction (ours), last-2 prediction, and last-4 prediction as the search metric.
We report the average AEPE of the top-3 models selected by the search metric. The models are trained for 40k iterations
in the search. Empirically, we find that using the intermediate predictions in the search metric results in a higher AEPE and
does not improve the S-AF search.
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Figure B.1. Sequence losses. We find that using the intermediate predictions of RAFT to compute the search metric does not lead to a
better set of S-AF hyperparameters.

C. Analysis and Discussion

Motion statistics of S-AF and AF We compute the statistics of the motion magnitude of the generated optical flow ground
truth in S-AF and AF datasets in Fig. C.1. We find that when the target dataset is Sintel, the motion statistics of S-AF are
similar to the statistics of Sintel data. In contrast, the motion statistics of AutoFlow are different from the Sintel data. In
addition, S-AF focuses more on small motion compared to AF which focuses on the middle-range motion. We hypothesize
that the self-supervised search metric may have much smaller values for middle/high-range motions compared to AEPE
which penalizes significantly on the error at the regions of large motions. Therefore, the S-AF data does not focus on regions
with large motions compared to AF. Similar to Tab. B.1, we also show the statistics of each individual S-AF dataset and the
mixed dataset. We find the statistics are similar for each individual S-AF data.
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Figure C.1. Histogram of motion magnitude. We include the motion statistics of the generated flow field by Self-AutoFlow and AutoFlow.

Interestingly, the Self-AutoFlow data focuses more on small motion compared to AutoFlow. Also, the statistics of Self-AutoFlow are closer
to the statistics of Sintel data. In addition, we show the statistics of individual S-AF dataset and their mixed results.

C.1. AEPE versus self-supervised losses of SMURF and S-AF

We calculate the self-supervised losses and the AEPE on the target datasets for SMURF and S-AF models in Tab. C.1.
The losses and errors are computed for the full target datasets and we report the average. In most cases, the SMURF models
have lower self-supervised losses compared to the S-AF models, while the S-AF models have lower AEPE.

Although the self-supervised metric is highly correlated with the AEPE, optimizing it directly by backpropagation to the
model might lead to a model with lower self-supervised loss and higher EPE. In contrast, our Self-AutoFlow method uses the
self-supervised loss indirectly to assess the quality of a generated dataset, which results in a model with higher self-supervised
loss and lower EPE. To conclude, Self-AutoFlow is a good strategy for using self-supervised losses.

Table C.1. Self-supervised losses versus AEPE. We compute the photometric, distillation and smoothness loss averaged on the training
set. We show that our S-AF model which uses the self-supervised loss indirectly to assess the quality of a generated dataset results in a
model with higher self-supervised loss and lower EPE.

Sintel Final [1] KITTI 2015 [2]
Method L"pholo wL »Cdislill \L »Csmoolh wL »Ctolal wL AEPE\L »Cpholo J/ »Cdislill »L [fsmoolh J/ »Clotal \L AEPE \L
SMUREF Chairs [4] 2.20 0.70 0.013 292 3.35 2.61 1.05 0.0046 3.67 7.94
S-AF 2.20 0.44 0.017 2.66 2.57 2.54 1.24 0.0052 3.78 4.28
+SS Sintel/KITTI
SMUREF [4] 2.17 0.67 0.012 2.86 2.80 2.54 0.80 0.0046 3.35 2.01
S-AF 2.20 0.65 0.013 2.87 2.40 2.49 0.87 0.0043 3.37 1.94

D. Additional Results
D.1. Visualization of keypoint propagation on BADJA

We visualize the keypoint propagation results on BADJA sequences by SMURF and our S-AF in Fig. D.1. The keypoints
correctly propagated are marked as a dot, and the keypoints with the wrong predicted trajectory are marked as a cross.
Compared the results without self-supervised fine-tuning, S-AF tracks the three keypoints on the back (gray), left ear (red),
and right ear (brown) correctly. On the other hand, SMUREF loses the keypoint on the right ear (brown) since the second
frame and loses the keypoint on the back (gray) since the third frame in the dog sequence. As for the models with self-
supervised fine-tuning, we show the keypoint in the horsejump-low sequence. S-AF correctly predicts the trajectory of the
purple keypoint on the tail, while SMUREF loses it since the second frame.
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Figure D.1. Visual results of keypoints on BADJA. The keypoints correctly tracked are marked as a dot, and the keypoints with the wrong
trajectory are marked as a cross. Compared the results without self-supervised fine-tuning in (a), S-AF tracks the three keypoints (gray,
red, and brown) correctly, while SMUREF loses the brown keypoint in the second frame and the gray keypoint in the third frame. As for the
results with self-supervised fine-tuning, S-AF correctly tracks the purple keypoint on the tail, and SMUREF loses it since the second frame.

D.2. Benchmark results

We provide the screenshots of both models on the public benchmarks in Fig. D.2 and Fig. D.3. As listed in Tab. 3, we
provide the detailed performance of our S-AF+SS models on public benchmarks in Tab. D.1. The S-AF+SS model is more
accurate in most cases while less accurate on unmatch and s0-10 for Sintel benchmark, and on F1-fg all for KITTI benchmark
compared to SMUREF. As shown in Tab. 5, we show the detailed performance of the supervised fine-tuning model RAFT-S-AF
in Tab. D.2. For KITTI benchmark, RAFT-S-AF is more accurate in most cases while less accurate for F1-fg. RAFT-S-AF is
more accurate for all cases for Sintel Clean and Sintel Final.
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Figure D.2. Screenshot of S-AF+SS on public benchmark. Our method was temporarily named as RAFT-SA.



GMA 119 1.388 0.582 7.963 1.537 0.461 0278 0.331 0.963 7.662

GMFlowNet (20 1.390 0.520 8.486 1275 0395 0.293 0.314 0,991 7.698
GMA+LCT-Flow (21 1.408 0.525 8611 1.428 0.404 0.251 0.279 0.876 8.299 Visualize Re:
AGF-Flow3 [22] 1.409 0.525 8618 1.433 0.403 0.250 0.278 0.878 8303
RFPM [ 1411 0.494 8,884 1.335 0.400 0.221 0.273 0,879 8.345 Visualize Res
RAFT-0CTC 24 1419 0.541 8574 1.455 0.442 0.242 0.301 0.940 8.118
RAFT-SA+ (2] 1.421 0.535 8,654 1.495 0451 0.207 0.260 0.896 8.460 |
GMA-FS [26] 1.430 0.602 8.171 1579 0470 0.263 0.333 0.977 7.961
AGFlow 271 1.431 0.559 8541 1.501 0.452 0.261 0.319 0.963 8.075
DIP 28] 1.435 0.519 8,919 1.102 0.407 0312 0.336 0.754 8.546 Visualize Res
CRAFT 122 1.441 0.611 8.204 1.574 0552 0.249 0.311 0.991 8131
ErrorMatch-GMA 120 1.446 0.584 8.472 1.503 0.483 0.280 0.311 0.935 8314
GMA-base 15 1.450 0.591 8.440 1532 0470 0.280 0.321 0,951 8.251 Visualize Rest
(a) Sintel Clean
RAFT+NCUP (9] 2.692 1.323 13.854 3.139 1.086 0.636 0.635 1.844 14.949
RAFT-it+_RVC 14 2.696 1.317 13.929 2.486 0.929 0.839 0.440 1.456 16.880
ERRN 5 2.701 1.348 13.744 3.164 1.109 0.666 0.647 1.854 14.943
CVE-RAFT B4 2.707 1.227 14.776 2.942 1.054 0617 0.580 1.726 15.634
AGF-Flow3 [57] 2.733 1217 15.105 2.419 0.912 0.737 0.463 1.440 17.133 Visualize Results
GMA+LCT-Flow 153 2734 1.218 15.103 2.419 0.914 0.738 0.465 1.441 17.131 Visualize Results
submission5367 (5] 2742 1.282 14.656 3.027 1.110 0.644 0.562 1.743 15.980
RAFT-SA+ %] 2.749 1.375 13.943 2.634 1132 0.872 0.469 1.545 16.967
L2L-Flow-ext-warm [5¢] 2.780 1.319 14.697 3.008 1.145 0.637 0.656 1.879 15.502
LCT-Flow2 £ 2.781 1.349 14.465 2.720 0.989 0.895 0.620 1582 16.405
RAFT-Fs 58] 2.785 1.341 14557 3114 1.104 0.649 0.681 1.850 15.487
EMD-L 59 2.790 1.260 15.258 2,629 0.981 0.837 0.537 1595 16.856 Visualize Results
MFR (50 2,801 1.380 14.385 3.075 1112 0.772 0.674 1.829 15.703
RAFTwarm+AOIR (1] 2.813 1.371 14.565 3.088 1.099 0.727 0.603 1.781 16.271
(b) Sintel Final
4 RigidMask+ISF "code 2.63% 7.85% 3.50% 100.00% 33s i GPU @ 2.5 Ghz (Python) ]
& Vang and . Ramanan: Learning to Segment Rigid Motions from Two Frames. CVPR 2021, :
5 TPCV:RAFT3D 248% 10.19% 3.76% 100.00% 025 | 1 core ® 2.5 Ghz (C/C++) 0
6 RAFT:it+ RVC 362% 533% 3.90% 100.00%  0.14s 1 core @ 2.5 Ghz (Python) m)
7 RAFT-OCTC 3.72%  5.39% ; 4.00%  100.00 % 0.2s i GPU @ 2.5 Ghz (Python) m]
i o, - Uin F Borikii and N. wak: Inposing Consistency for Optical Flow Estimation (Qualcomm Al Rescarchy, CVPR 3027, "
8 i SF2SE3 icode | 3.17% | B.79% | 4.11% | 100.00 % 27s | GPU @ »3.5 Ghz (Python) O
[ Sommer, B Schvippel and T Brow: SEISER: Clustering Scans Flow ints SE (3)-Motions wia roposal and Selection. DAGH German Conference or Pattern Recognition 2022.
9 ! RAFT-CF-PL3 3.80%  5.65% | 4.11%  100.00% 0.055 | GPU @ 2.5 Ghz (Python) ]
 Thang, By W, Banesl, €. Caiv G Yo, X, Yos and V. ¥ir: CLIP-FLove: Contrastive Learnieg. oy ser-supervise ierative Paudn (abeling for Dptical Fiow Estirmation. 3637
| 10 RAFT-S-AF ‘code 3.86%  5.38% @ 4.12% 100.00% 15 1 core @ 2.5 Ghz (C/C++) ] |
{11 1 MS RAFT+ corr RVC {code | 3.83% | 5.71% | 4.15% | 100.00 % 0.65s | GPU @ 2.5 Ghz (Python + C/C++) O

A Jahedt, M. Luz, U Mehl, . Rivinius and A. Brubn: Hish Resolution Multi-cale RAFT, Robust Vision Challenge 2022, arXiv preprint arkivi2210.16900 2022,

A, Jahedi, L. Mehl, M. Rivinius and A. Bruhn: Multi-Scale Raft: Combining Hierarchical Concepts for Learning-Based Optical Flow Estimation. IEEE International Conference on Image Processing (ICIP) 2022

P12 MS RAFT+ RVC 3.89% | 5.67% | 4.19%  100.00 % 0.65s GPU @ 2.5 Ghz (Python + C/C++) ]

[RER DIP {code  3.86% 5.96% | 421% 100.00% 0.15s 1 core @ 2.5 Ghz (Python) O

G iheng, N Nie, 7. Ling, B Xiong, J. Liu, H. Wang and J.
Recognition 2022.

: DIP: Deep Inverse Pat:hmal‘ch for High- Resolution Optical Flow. Praceedings of the IEEE/CVF Conference on Computer Vision and Pattern

P14 ! RAFT-3D 3.39% | 8.79% | 4.29% | 100.00 % 2s GPU @ 2.5 Ghz (Python + C/C++) ]

Z. Teed and J. Deng: RAFT-3D: Scene Flow using Rigid-Motion Embeddings. arXiv preprint arXiv:2012.00726 2020.

[15 RAFT-it : 4.11%  534% ' 431% 100.00% 01s i GPU @ 2.5 Ghz (Python) m]

P1p RCA-Flow 3.96%  6.21% | 4.33% | 100.00 % 0.16s 1 core @ 2.5 Ghz (Python) a
(c) KITTI

Figure D.3. Screenshot of the supervised fine-tuning results of S-AF on public benchmark. Our method was temporarily named as
RAFT-SA+ and RAFT-S-AF.
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