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We first discuss implementation and experiment details. Next, we present the ablation studies of our approach. Third, we
provide additional analysis of the proposed design. Finally, we include more visual results.

A. Implementation Details

Training details. We use 80 k training steps for the rendering hyperparameter search. We include the following rendering
hyperparameters for generating the S-AF data:
• Number of foreground objects
• Scale, rotation, translation, grid strength, grid size of the motion for foreground
• Scale, rotation, translation, grid strength, grid size of the motion for background
• Probability and strength of the mask blur
• Probability and strength of the motion blur
• Probability, density and brightness of the fog
• Minimum and maximum of the object’s diagonal
• Minimum and maximum of the object’s center location
• Irregularity and spikiness of the polygon
As for the hyperparameters in the search metric Eq. (2) in the main paper, we use (wsmooth, wdistill)=(0.6, 4) for the

Sintel [1] and the DAVIS dataset [3], and (wsmooth, wdistill)=(1.2, 8) for the KITTI dataset [2]. We pretrain the model on a
generated S-AF dataset Dauto for 3.2 M iterations for Sintel and 200 k iterations for KITTI and DAVIS. We randomly crop
input images to size 368×496 at training time and use a batch size of 36.

We further fine-tune the model with the self-supervised loss (Eq. (3)) for 12 k iterations on the Sintel dataset, 75 k iterations
on the KITTI dataset, and 100 k iterations on the Davis dataset. We further apply the multi-frame fine-tuning on Sintel and
KITTI datasets for 30 k iterations (Eq. (4)) with the same parameter setting from SMURF [4]. We randomly crop input
images to size 368×496 at training time and use a batch size of 8. We use the data augmentations from RAFT [5] including
random cropping, stretching, scaling, flipping, and erasing. As for the photometric augmentations, we randomly adjust the
contrast, saturation, brightness and hue.

Evaluation metrics. We use the average end-point error (AEPE) evaluation metric. For KITTI, we additionally report the
outlier rate (Fl-all), i.e. the ratio (in %) of outlier pixels among all ground truth pixels. If an error of a pixel exceeds the
3-pixel threshold and 5% w.r.t. the ground truth, the pixel is considered as an outlier.

B. Ablation Studies

B.1. Training by individual S-AF dataset and mixed S-AF dataset

As described in Sec. 3.2 and Sec. 4.2, to improve the robustness of the algorithm, we sort the sets of hyperparameters
returned by Self-AutoFlow according to the self-supervised search metric and choose the top-3 hyperparameter sets. We
form our final Self-AutoFlow dataset by equally mixing a set of images generated from each hyperparameter set. For a fair
comparison, we also prepare an equivalent model for AutoFlow, denoted as AF-mix. In addition to the results of training
on the dataset generated by mixing the top-3 hyperparameters in Tab. 1, we report the results of training models on each
individual S-AF and AF dataset in Tab. B.1. The models are trained for 0.2M iterations. We note that the top hyperparameters
sets are selected according to the search, where the model is trained for 40K iterations, and here we report the results of models
trained for 0.2M iterations, so the top-1 hyperparameters might not have the lowest AEPE for AF models.

Unlike supervised AutoFlow, the results of S-AF trained on the top-2 hyperparameters on Sintel Final and S-AF trained
on the top-3 hyperparameters on KITTI show that there is no guarantee that the top candidates returned by self-supervised
AutoFlow are the optimal set of hyperparameters. Mixing the top-3 datasets decreases the likelihood of sampling a set of
poor-performing AutoFlow hyperparameters and improves the robustness of the algorithm.
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Table B.1. Training by individual S-AF dataset and mixed S-AF dataset. We show that training on mix-3 datasets decreases the
likelihood of sampling a poor-performing AutoFlow hyperparameters and improves the robustness of the algorithm.

Sintel Clean [1] Sintel Final [1] KITTI 2015 [2]

Method top-1 top-2 top-3 mix-3 top-1 top-2 top-3 mix-3 top-1 top-2 top-3 mix-3

AF-mix (0.2M) 2.11 2.18 2.10 2.18 2.85 2.83 2.82 2.83 4.70 4.35 4.58 4.43
S-AF (0.2M) 2.16 2.14 2.13 2.22 2.83 2.93 2.84 2.84 4.65 4.06 5.40 4.58

B.2. Sequence losses in the search metric of S-AF

In Sec. 3.2, we mention that since there is no backpropagation to the model in the search of AutoFlow, the search metric
uses only the final flow prediction of RAFT instead of all intermediate. In Fig. B.1, we conduct a study using the intermediate
predictions of RAFT to compute the search metric. Specifically, we compute the search metric once for each intermediate
prediction and we exponentially decay the weight for earlier predictions [4]. Since the search metric is computed at the
original resolution of the target data, we use at most the last four predictions due to memory constraints.

We conduct the S-AF search using last-1 prediction (ours), last-2 prediction, and last-4 prediction as the search metric.
We report the average AEPE of the top-3 models selected by the search metric. The models are trained for 40k iterations
in the search. Empirically, we find that using the intermediate predictions in the search metric results in a higher AEPE and
does not improve the S-AF search.

Avg top-3: 3.47Avg top-3: 3.49Avg top-3: 3.59

Figure B.1. Sequence losses. We find that using the intermediate predictions of RAFT to compute the search metric does not lead to a
better set of S-AF hyperparameters.

C. Analysis and Discussion

Motion statistics of S-AF and AF We compute the statistics of the motion magnitude of the generated optical flow ground
truth in S-AF and AF datasets in Fig. C.1. We find that when the target dataset is Sintel, the motion statistics of S-AF are
similar to the statistics of Sintel data. In contrast, the motion statistics of AutoFlow are different from the Sintel data. In
addition, S-AF focuses more on small motion compared to AF which focuses on the middle-range motion. We hypothesize
that the self-supervised search metric may have much smaller values for middle/high-range motions compared to AEPE
which penalizes significantly on the error at the regions of large motions. Therefore, the S-AF data does not focus on regions
with large motions compared to AF. Similar to Tab. B.1, we also show the statistics of each individual S-AF dataset and the
mixed dataset. We find the statistics are similar for each individual S-AF data.
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Figure C.1. Histogram of motion magnitude. We include the motion statistics of the generated flow field by Self-AutoFlow and AutoFlow.
Interestingly, the Self-AutoFlow data focuses more on small motion compared to AutoFlow. Also, the statistics of Self-AutoFlow are closer
to the statistics of Sintel data. In addition, we show the statistics of individual S-AF dataset and their mixed results.

C.1. AEPE versus self-supervised losses of SMURF and S-AF

We calculate the self-supervised losses and the AEPE on the target datasets for SMURF and S-AF models in Tab. C.1.
The losses and errors are computed for the full target datasets and we report the average. In most cases, the SMURF models
have lower self-supervised losses compared to the S-AF models, while the S-AF models have lower AEPE.

Although the self-supervised metric is highly correlated with the AEPE, optimizing it directly by backpropagation to the
model might lead to a model with lower self-supervised loss and higher EPE. In contrast, our Self-AutoFlow method uses the
self-supervised loss indirectly to assess the quality of a generated dataset, which results in a model with higher self-supervised
loss and lower EPE. To conclude, Self-AutoFlow is a good strategy for using self-supervised losses.

Table C.1. Self-supervised losses versus AEPE. We compute the photometric, distillation and smoothness loss averaged on the training
set. We show that our S-AF model which uses the self-supervised loss indirectly to assess the quality of a generated dataset results in a
model with higher self-supervised loss and lower EPE.

Sintel Final [1] KITTI 2015 [2]

Method Lphoto ↓ Ldistill ↓ Lsmooth ↓ Ltotal ↓ AEPE↓ Lphoto ↓ Ldistill ↓ Lsmooth ↓ Ltotal ↓ AEPE ↓
SMURF Chairs [4] 2.20 0.70 0.013 2.92 3.35 2.61 1.05 0.0046 3.67 7.94
S-AF 2.20 0.44 0.017 2.66 2.57 2.54 1.24 0.0052 3.78 4.28

+SS Sintel/KITTI
SMURF [4] 2.17 0.67 0.012 2.86 2.80 2.54 0.80 0.0046 3.35 2.01
S-AF 2.20 0.65 0.013 2.87 2.40 2.49 0.87 0.0043 3.37 1.94

D. Additional Results

D.1. Visualization of keypoint propagation on BADJA

We visualize the keypoint propagation results on BADJA sequences by SMURF and our S-AF in Fig. D.1. The keypoints
correctly propagated are marked as a dot, and the keypoints with the wrong predicted trajectory are marked as a cross.
Compared the results without self-supervised fine-tuning, S-AF tracks the three keypoints on the back (gray), left ear (red),
and right ear (brown) correctly. On the other hand, SMURF loses the keypoint on the right ear (brown) since the second
frame and loses the keypoint on the back (gray) since the third frame in the dog sequence. As for the models with self-
supervised fine-tuning, we show the keypoint in the horsejump-low sequence. S-AF correctly predicts the trajectory of the
purple keypoint on the tail, while SMURF loses it since the second frame.
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Figure D.1. Visual results of keypoints on BADJA. The keypoints correctly tracked are marked as a dot, and the keypoints with the wrong
trajectory are marked as a cross. Compared the results without self-supervised fine-tuning in (a), S-AF tracks the three keypoints (gray,
red, and brown) correctly, while SMURF loses the brown keypoint in the second frame and the gray keypoint in the third frame. As for the
results with self-supervised fine-tuning, S-AF correctly tracks the purple keypoint on the tail, and SMURF loses it since the second frame.

D.2. Benchmark results

We provide the screenshots of both models on the public benchmarks in Fig. D.2 and Fig. D.3. As listed in Tab. 3, we
provide the detailed performance of our S-AF+SS models on public benchmarks in Tab. D.1. The S-AF+SS model is more
accurate in most cases while less accurate on unmatch and s0-10 for Sintel benchmark, and on F1-fg all for KITTI benchmark
compared to SMURF. As shown in Tab. 5, we show the detailed performance of the supervised fine-tuning model RAFT-S-AF
in Tab. D.2. For KITTI benchmark, RAFT-S-AF is more accurate in most cases while less accurate for F1-fg. RAFT-S-AF is
more accurate for all cases for Sintel Clean and Sintel Final.
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Figure D.2. Screenshot of S-AF+SS on public benchmark. Our method was temporarily named as RAFT-SA.
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Figure D.3. Screenshot of the supervised fine-tuning results of S-AF on public benchmark. Our method was temporarily named as
RAFT-SA+ and RAFT-S-AF.



Table D.1. Detailed performance of S-AF+SS on public benchmark.

Model all match unmatch d0-10 d10-60 d60-140 s0-10 s10-40 s40+
SMURF 3.15 1.55 16.23 3.14 1.31 0.86 0.40 1.37 21.15
S-AF+SS 3.03 1.12 18.58 2.58 0.99 0.58 0.41 1.19 20.48

(a) Sintel Clean
Model all match unmatch d0-10 d10-60 d60-140 s0-10 s10-40 s40+
SMURF 4.18 2.14 20.86 4.20 1.74 1.30 0.74 2.30 25.82
S-AF+SS 3.98 1.89 21.01 4.00 1.58 1.08 0.89 2.23 23.53

(b) Sintel Final

Model All Occ
Fl-bg Fl-fg Fl-all Fl-bg Fl-fg Fl-all

SMURF 6.04 % 10.75 % 6.83 % 4.46 % 8.86 % 5.26 %
S-AF+SS 5.90 % 11.09 % 6.76 % 4.41 % 8.67 % 5.18 %

(c) KITTI

Table D.2. Detailed performance of the supervised fine-tuning results of S-AF on public benchmark.

Model all match unmatch d0-10 d10-60 d60-140 s0-10 s10-40 s40+
RAFT-it 1.55 0.61 9.24 1.66 0.51 0.27 0.29 0.97 9.26
RAFT-S-AF 1.42 0.54 8.65 1.50 0.45 0.21 0.26 0.90 8.46

(a) Sintel Clean
Model all match unmatch d0-10 d10-60 d60-140 s0-10 s10-40 s40+
RAFT-it 2.90 1.41 15.03 2.81 1.16 0.88 0.51 1.70 17.62
RAFT-S-AF 2.75 1.38 13.94 2.63 1.13 0.87 0.47 1.55 16.97

(b) Sintel Final

Model All Occ
Fl-bg Fl-fg Fl-all Fl-bg Fl-fg Fl-all

RAFT-it 4.11 % 5.34 % 4.31 % 2.68 % 2.77 % 2.70 %
RAFT-S-AF 3.86 % 5.38 % 4.12 % 2.52 % 2.86 % 2.59 %

(c) KITTI
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