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A. Generalization performance

Performance on unseen categories. We train on 6 cate-

gories (car, chair, diningtable, motorbike, train, tvmonitor)

of Pascal3D+ and test on other unseen categories (see Fig. 1

(a)). We find our model can generalize to categories that are

highly related to at least one training category (e.g. sofa -

average CD 0.571), and does not generalize as well to cate-

gories less related to training categories (e.g. bottle - aver-

age CD 1.020).

We further quantify the relationship between general-

ization performance and semantic relevance. We analyze

the correlation between reconstruction error and minimum

CLIP distance from each test sample to training images. As

in Fig. 2 (b), there exists a clear positive correlation (Pear-

son coefficient ρ = 0.53) between the two variables. This

verifies our model often generalizes better to samples that

are more semantically related to the seen categories.

(a) Generalization to Unseen Categories (b) Direct Inference on CO3D

Figure 1. (a) Reconstruction on unseen categories. (b) Inference

of our Pix3D-trained model on CO3D chairs.

Direct inference on in-the-wild data. Our method can also

reconstruct faithful shapes under reasonable domain gaps.

We test our Pix3D model directly on CO3D chair images

(without fine-tuning) and find most reconstructions are rea-

sonable. See Fig. 1 (b) for examples.

B. Additional Analysis of the Model

Viewpoint robustness of CLIP embeddings. We quanti-

tatively evaluate the viewpoint robustness of CLIP embed-

(a) Viewpoint Difference to CLIP Neighbors (b) Correlation between CLIP and reconstruction error

Figure 2. (a) Histogram of viewpoint distance from query images

to 5 CLIP neighbors on Pix3D. (b) Correlation between recon-

struction error and minimum CLIP distance on unseen categories.

dings on Pix3D chairs. In our experiments, CLIP can find

a significant number of neighbors with distinct viewpoints

(see Fig. 2 (a)). Geodesic distance is the minimal angu-

lar difference between two rotations. The average geodesic

distance from query images to CLIP neighbors is 64◦, and

67% of the query images have at least one neighbor with

distinct pose (at least 90◦away).

Robustness to corrupted masks. To evaluate the perfor-

mance under corrupted masks, we replace the Pix3D masks

with masks corrupted by perlin noise and then train/test our

models under different level of pixel corruption percent-

ages. Under 0/5/10/20/30/50% corruption level, the cham-

fer distance is 0.612/0.626/0.632/0.651/0.689/0.763 respec-

tively. This experiment shows that our model is not signifi-

cantly affected by mild to moderate mask inaccuracy.

Performance with GT viewpoints. We further evaluate

our model when GT viewpoints are given during train-

ing. An image can be explained by infinite combinations

of shapes and viewpoints. When GT viewpoints are given,

such entanglement is resolved and the learning will be much

easier. Our model trained with GT viewpoints obtains aver-

age CD of 0.418 on Pix3D (vs. 0.612 w/o GT viewpoint).

Additional discussion on retrieval methods. Comparing

reconstruction methods to retrieval methods has been one

of the central topics in the area of single-view shape re-

construction [3]. Based on the finding about CLIP’s re-
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lationship to shape in our paper, it would be natural to

consider the retrieval baseline using CLIP. While retrieving

shapes with CLIP is an interesting direction, we would like

to emphasize that it is not directly comparable to our pro-

posed reconstruction method. Retrieval methods require a

large paired image-3D shape database, similar to the non-

scalable fully supervised 3D reconstruction setting. In con-

trast, our method only requires single-view 2D images dur-

ing training, allowing it to learn to reconstruct objects from

datasets like OpenImages for which there are no paired 3D

shapes. Such datasets without any geometric annotations

are our main application domain, and retrieval methods can-

not be applied to these datasets.

C. Additional Implementation Details.

Implicit representation and rendering. The surface rep-

resentation and texture rendering follow [4, 6]. We use an

implicit SDF field and convert it to densities for volumetric

rendering. The conversion from SDF to densities is done via

the Cumulative Distribution Function (CDF) of the Laplace

distribution:
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where s is the SDF. Because our focus is shape, and

learning radiance is challenging without viewpoint anno-

tation, we represent texture as an RGB field without any

view-dependency. The surface normal rendering follows

MonoSDF [6], where the local normal vectors are estimated

by the gradient of the SDF field and aggregated via the stan-

dard volume rendering.

Uniform viewpoint prior. We use a uniform prior to regu-

larize the viewpoint learning, which helps to prevent the ro-

tation estimation from degeneration. Specifically, for each

minibatch during training, we estimate the empirical dis-

tribution of the predicted azimuth. We then minimize the

Earth-Mover Distance (EMD) between the empirical az-

imuth distribution and a uniform prior within [0◦, 360◦].

D. Additional Results on OpenImages

We show more reconstruction results of our model

trained on all 53 OpenImages [2] categories used in [5].

We further compare with SS3D [1] qualitatively, where our

model demonstrates state-of-the-art reconstruction perfor-

mance. Note the training is category-specific and the per-

formance may be further improved by training a joint model

via distillation [1], which is parallel to our research direc-

tion here.
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Figure 3. Additional qualitative results and comparison on full OpenImages.
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Figure 4. Additional qualitative results and comparison on full OpenImages.



References

[1] Kalyan Vasudev Alwala, Abhinav Gupta, and Shubham Tul-

siani. Pre-train, self-train, distill: A simple recipe for supersiz-

ing 3d reconstruction. In Proceedings of the IEEE/CVF Con-

ference on Computer Vision and Pattern Recognition, pages

3773–3782, 2022. 2

[2] Alina Kuznetsova, Hassan Rom, Neil Alldrin, Jasper Uijlings,

Ivan Krasin, Jordi Pont-Tuset, Shahab Kamali, Stefan Popov,

Matteo Malloci, Alexander Kolesnikov, et al. The open im-

ages dataset v4. International Journal of Computer Vision,

128(7):1956–1981, 2020. 2

[3] Maxim Tatarchenko, Stephan R Richter, René Ranftl, Zhuwen
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