
Supplementary Material:
Siamese DETR

A. More Details of DETR

A.1. Multi-head Attention

Single-head Attention (SHA) . We start with the attention
mechanism with single head. Given the key-value sequence
xkv , query sequence xq , and linear projection of the atten-
tion head fv, fk, fq , we can compute so-called query q, key
k, and value v embeddings:

q = fq(xq + ϕq);

k = fk(xkv + ϕp);

v = fv(xkv),

(1)

where ϕp is the positional embedding for the key-value se-
quences, and ϕq is the positional embedding for the query
sequences. And the attention outputs q̂ are computed by the
aggregation of weighted values:

q̂ = SHA(q,k,v) =
∑
j

αi,jvj , (2)

where the attention weights is based on softmax of scaled
dot products between i-th query and j-th key:

αi,j = Softmax(
qik

T
j√

dk
), (3)

where dk is a scaling factor.

Multi-head Attention (MHA) . Through concatenating N
single-head attentions followed by a projection fMHA, we can
compute the multi-head attention:

q̂ = MHA(q,k,v)

= fMHA

(
Concat

[
SHA0(q,k,v), . . . ,SHAN (q,k,v)

])
.

(4)
Note that the output q̂ is the same size as the input query
sequences xq .

A.2. Bipartite Matching

Following [1, 2], we apply the Hungarian algorithm [3]
to match the N predictions ŷ with the ground truth y. The
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Figure 1. Sensitivity of Hyper-parameters in Siamese DETR.

matching loss H is defined as:

H(y, ŷ) =

N∑
i=1

[
− η0 log k̂σ̂(i) + 1{ki=1}Lbox(bi, b̂σ̂(i))

]
,

(5)
where k is the binary classification indicating whether each
query is matched (ki = 1) or not (ki = 0), Lbox is a com-
bination of generalized IoU loss [6] and ℓ1 loss, and σ̂(i) is
the index of prediction that matching with i-th ground truth
optimally. The coefficients of binary classification η0, gen-
eralized IoU loss η1, and ℓ1 loss η2 in Equation 5 are set to
1, 2, 5 following [1], respectively.

B. More Ablations
Hyper-parameters. We follow [1] to set loss weight of
Lloc (λ2) to 1.0 in all setups and further ablate the λ0 and
λ1 using Conditional DETR on COCO. Figure 1 illustrates
the sensitivity of λ0 and λ1. It suggests that the transfer
performance is robust to λ0 and λ1 variation. To yield the
best performance, we set λ0, λ1 to 3, 10 on ImageNet, and
λ0, λ1 to 0.3, 3 on COCO. For other novel datasets, a simple
selection (e.g., λ1 = 1.0, λ2 = 1.0) will be okay.

Data Efficiency. Self-supervised pretrained models not
only achieve high performance when transferring to down-
stream tasks, but provide a better initialization when us-
ing limited data. To verify the data efficiency of Siamese
DETR, we consider the transfer performance on the lim-
ited amount of downstream datasets. Specifically, we pre-
train Conditional DETR on ImageNet and finetune it on
10%/30%/50%/70% PASCAL VOC datasets. All these
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Figure 2. Data efficiency of Siamese DETR. We finetune Siamese
DETR and UP-DETR using 10%/30%/50%/70% PASCAL VOC
datasets.

Table 1. Ablations on downstream initialization. We initialize the
Vanilla DETR using models pretrained by Siamese DETR, DE-
TReg and UP-DETR without finetining. We report average recall
with detecting top K objects, denoted as AR@K.

Method AR@1 AR@10 AR@100
random 0.0 0.1 0.5

UP-DETR 9.5 17.9 24.0
DETReg 11.2 20.5 26.5

ours 12.4 23.0 30.7

splits are selected randomly. As shown in Figure 2, Siamese
DETR can achieve a similar (49.3 AP) performance with
from scratch model (49.9) using only 30% of datasets.
Moreover, Siamese DETR outperforms UP-DETR by a
large margin in all splits.

Downstream initialization. To investigate the downstream
initialization of Siamese DETR, we pretrain the Vanilla
DETR on ImageNet and only finetune the box prediction
and classifier head on PASCAL VOC while keeping the pa-
rameters of pretrained CNN backbone, encoder and decoder
fixed. We report average recall with detecting top K ob-
jects, denoted as AR@K. As shown in Table 1, Siamese
DETR outperforms its counterparts and random initializa-
tion.

More DETR-like architecture. We provide transfer results
of Siamese DETR with more advanced DETR-like architec-
ture, i.e., DAB-Deformable-DETR with 300 queries [5] and
DN-DAB-Deformable-DETR with 300 queries [4]. We fol-
low the default setup in their origin paper. The results are
shown in Table 2. Both DAB-DETR and DN-DETR can
benefit from the initialization of Siamese DETR, verifying
the generalization of Siamese DETR. Furthermore, Siamese

Table 2. More DETR-like architecture. We pretrain the model us-
ing Siamese DETR on COCO for the 40/60 schedule, then finetune
on full/10% PASCAL VOC dataset.

DETR VOC VOC 10%
DAB-DETR DN-DETR DAB-DETR DN-DETR

from scratch 57.9 58.9 32.2 32.9
Siamese DETR 62.2 (+4.3) 63.4 (+4.5) 41.8 (+9.6) 43.6 (+10.7)

Table 3. Memory cost and iteration time during pretraining.

Method GPU Mem. Iteration time
Siamese DETR 7528 MB 0.4036 s/it

UP-DETR 7377 MB 0.3118 s/it
DETReg 8885 MB 0.3528 s/it

DETR also leads a significant margin when using limited
downstream datasets.

GPU Memory Cost and Iteration Time. Firstly, it is em-
phasised that none of three pre-training methods increase
extra cost in GPU memory and time during downstream
finetuning. We provide a quantitative comparison on GPU
memory cost and iteration time during pretraining in Table
3. All three methods follow the same setup, i.e., pretraining
Conditional DETR (100 queries) on COCO using the same
GPU. The batch size is set to 4 on each GPU. The input
images are processed with the same augmentation.

Compared with UP-DETR on GPU memory cost, there
is a slight increase in Siamese DETR because the parame-
ters in Siamese DETR are all shared. Besides, performing
multi-view learning and adding crop-level features does not
bring too much time cost.

C. More Visualization

C.1. Convergence

Figure 3 and Figure 4 illustrate the convergence curves
of models finetuned on COCO and PASCAL VOC, respec-
tively. The model initialized by Siamese DETR converges
faster and outperforms its counterparts by significant mar-
gins in all setups.

C.2. More Qualitative Results

We also provide more qualitative results of box predic-
tions and corresponding attention maps when initializing
the downstream model using Siamese DETR, UP-DETR,
and DETReg without finetuning in Figure 5. The visualiza-
tion results verify better transferability of Siamese DETR
against its counterpart.
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Figure 3. Illustration of convergence curves when finetuned on COCO.
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Figure 4. Illustration of convergence curves when finetuned on PASCAL VOC.
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Figure 5. More visualization on box predictions and attention maps when initializing the downstream models using Siamese DETR, UP-
DETR and DETReg without finetuning.
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