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1. Detailed Implementations

Architectures of DQ-VAE & DQ-Transformer. DQ-
VAE follows the official implementation of VQGAN [2] ex-
cept for the proposed lightweight Dynamic Coding module.
For the hierarchical encoder, we add two residual blocks
followed by a down-sampling block to extract each feature
map.

DQ-Transformer adopts a stack of causal self-attention
blocks [6] for both Content-Transformer and Position-
Transformer. We train DQ-Transformer with two dif-
ferent settings, i.e., DQ-Transformerb(base) with 6 layers
Position-Transformer and 18 layers Content-Transformer
of a total 308M parameters, and DQ-Transformerl(large)
with 6 layers Position-Transformer and 42 layers Content-
Transformer of a total 608M parameters to demonstrate our
scalability. The dimensionality of the DQ-Transformer is
all set to be 1024. The number of heads used in the multi-
head self-attention is 16. The probability of dropout is all
set to be 0.1.

Training Details. MQ-VAE is trained with Adam op-
timizer with β1 = 0.5 and β2 = 0.9 and the base learning
rate is set to be 0.0000045 following [2]. The weight for ad-
versarial loss is set to be 0.75 and the weight for perceptual
loss is set to be 1.0. We do not use any other tricks such as
the random restart of unused codes proposed in JukeBox [1]
to increase the codebook usage, to give a fair comparison
with VQGAN [2]. For FFHQ, MQ-VAE is trained for 150
epochs with a linear learning rate warmed up during the first
5 epochs. For ImageNet, MQ-VAE is trained for 50 epochs
with a linear learning rate warmed up during the first 0.5
epochs.

The DQ-Transformer is trained using AdamW optimizer
with β1 = 0.9 and β2 = 0.95. The weight decay is set to
be 0.01. We use a cosine learning rate decay schedule with
0.0005 of the initial learning rate. The DQ-Transformer is

*Zhendong Mao is the corresponding author.

λ rFID↓
1 3.6288

10 3.5311
100 3.7932

Table 1. Ablations of loss balance hype-parameter λ for MQ-VAE
on FFHQ benchmark.

trained for 100 epochs for FFHQ and ImageNet.

2. More Analysis of DQ-VAE
2.1. Impact of loss balance hyper-parameter λ

We first analyze the impact of the loss balance hype-
parameter λ, which is used to balance the budget loss. As
shown in Table 1, we conduct ablations on the FFHQ bench-
mark for MQ-VAE with dual granularities F = {8, 16} and
rf=8 = 0.5. The models are trained for 50 epochs. We find
that the reconstruction results are robust to λ and the best
reconstruction quality is achieved when λ = 10. We further
show the training and validation curves of budget loss and
the ratio of finer granularity (f = 8). We find that the net-
work converges very quickly and matches the expectation
very well. The budget loss also drops very quickly.

2.2. More Visualization

We provide more visualization of our information-
density-based variable-length coding in Figure 2 and Figure
3. We show that our coding map matches VQGAN’s error
map for both simple and complex images, i.e., important re-
gions are assigned to more codes and unimportant ones are
assigned to few codes, leading to better reconstruction qual-
ity. We further provide more comparison of dynamic cod-
ing with different granularity ratios in Figure 4 and Figure
5. We show that our dynamic coding successfully assigns
more codes for important regions with dense information
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Figure 1. Detailed Training and Validation curves of MQ-VAE with dual granularities F = {8, 16} and rf=8 = 0.5, λ = 10.

density for all different granularities ratios.

3. More Analysis of DQ-Transformer
3.1. More results

Following previous works, we conduct more experi-
ments on more datasets such as Celeb-HQ [3] (done by ViT-
VQGAN [8]) and LSUN [7] (done by RQ-VAE [4]): on
Celeb-HQ we outperform ViT-VQGAN (6.54 vs. 7.0); on
LUSN-{church} we outperform RQVAE (6.21 vs. 7.45).

3.2. Different Methods for Dynamic Prior Learning

Learning the dynamic prior of our proposed DQ-VAE’s
variable-length coding is a new, challenging but promising
task with great value. Except for the DQ-Transformer pro-
posed in the main paper, we also evaluate many other types
of structure and model design. To give a comprehensive un-
derstanding of our method, we briefly describe two other
typical model designs for the interests of other researchers.

Global-Local Model Design. Inspired by [4], we pro-
pose to first model the sum of the codes in each image
region and then model each code separately. That is, we
first model each region globally and then model the codes
in each region locally using two different transformers. This
design could successfully deal with the irregular code map
in each region and naturally support batch training and sam-
pling. However, we find this design only results in very poor
FID scores (around 24 on the FFHQ benchmark), and the

performance gets even worse when more granularities are
adopted.

Raster-Scan Dynamic Model Design. Different from
the coarse-to-fine autoregression in the main paper, we also
evaluate the traditional raster-scan order autoregression for
DQ-VAE. To be specific, we first construct the content se-
quence in a raster-scan order. As for the position sequence,
we construct a two-level position sequence, i.e., the first-
level position sequence indicates the image region position
of each code, and the second-level position sequence indi-
cates the relative position of each code in the image region.
We find this model design achieves slightly better genera-
tion quality compared to Global-Local Model Design but is
still much worse than the proposed coarse-to-fine autore-
gression in the main paper (around 18 FID score on the
FFHQ benchmark). Another vital shortcoming of this de-
sign is that it does not support batch sampling. The results
are worse than the previous raster-scan autoregression of
fixed-length coding because of the challenges of dynamic
coding. The results are worse than our proposed coarse-to-
fine autoregression which indicates the effectiveness of our
coarse-grained to fine-grained generation order.

3.3. Impact of Different Content & Position Layers

We analyze the impact of different content and position
layers for DQ-Transformer in Table 2. We find that more
layers for content are more important than more layers for
the position. The reason is that we find the position dis-



Figure 2. Visualization of the variable-length coding of our DQ-VAE, where our coding map exactly matches the error map of VQGAN
and therefore leads to better reconstruction quality, i.e., the information-dense regions where VQGAN has higher reconstruction error
are assigned to more codes, while information-sparse regions where VQGAN has lower reconstruction error are assigned to few codes.

tribution is very easy to learn since the position loss drops
very quickly to nearly zero during training. Moreover, pre-
vious autoregressive models [4, 5, 9, 10] always face the
overfitting problem while we observe no overfitting for DQ-
Transformer, which indicates that our dynamic coding pro-
vides a more general and effectiveness discrete representa-
tions for images.
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Figure 4. Visualization of the variable-length coding of our DQ-VAE, where our coding map exactly matches the error map of VQGAN
and therefore leads to better reconstruction quality, i.e., the information-dense regions where VQGAN has higher reconstruction error
are assigned to more codes, while information-sparse regions where VQGAN has lower reconstruction error are assigned to few codes.



Figure 5. Visualization of the variable-length coding of our DQ-
VAE, where our coding map exactly matches the error map of
VQGAN and therefore leads to better reconstruction quality, i.e.,
the information-dense regions where VQGAN has higher recon-
struction error are assigned to more codes, while information-
sparse regions where VQGAN has lower reconstruction error are
assigned to few codes.
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