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Figure 1. An image sampled from the video demo for 3D semantic occupancy prediction on the nuScenes validation set (not seen in the
training phase). The six images in the top left are the inputs to our model captured by the front-left, front, front-right, back-left, back, and
back-right cameras. The six images in the top right denote our prediction results with the corresponding views as the inputs. The bottom
two images provide a global view of our predictions where the red-green-blue box represents the ego vehicle.

A. Dataset Details

The Panoptic nuScenes dataset [7] collects 1000 driv-
ing scenes of 20 seconds duration each, and the keyframes
are annotated at 2Hz. Each sample contains RGB images
from 6 cameras with 360◦ horizontal FOV and point cloud
data from 32 beams LiDAR sensor. The total of 1000 scenes
are officially divided into training, validation and test splits
with 700, 150 and 150 scenes, respectively.

The SemanticKITTI dataset [1] includes outdoor-
scene automotive LiDAR scans voxelized into 256× 256×
32 grids. Each voxel has a side length of 0.2m and is labeled

with one of 21 classes (19 semantic, 1 free and 1 unknown).
In our experiments, we also use RGB images captured by
cam2 from the KITTI odometry benchmark. The voxel and
image data is officially arranged as 22 sequences, split into
10/1/11 sequences for training, validation and test.

B. Implementation Details

3D semantic occupancy prediction and LiDAR seg-
mentation. TPVFormer-Base uses the ResNet101-DCN [5,
8] initialized from FCOS3D [15] checkpoint, while
TPVFormer-Small adopts the ResNet-50 [8] pretrained on
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ImageNet [6]. The TPV resolutions are 200x200x16 and
100x100x8 for the base and small versions, respectively,
and we upsample the TPV planes by a factor of 2 in
TPVFormer-Small for finer supervision. Although both of
them share the same TPV feature dimension of 128, the base
model uses multi-scale image features and an input image
resolution of 1600x900 instead of single-scale image fea-
tures and 800x450 input for the small model.

For training, we adopt the AdamW [11] optimizer with
initial learning rate as 2e-4 and weight decay as 0.01. We
use the cosine learning rate scheduler with a linear warming
up in the first 500 iterations, and the same image augmen-
tation strategy as BEVFormer [10]. All models are trained
for 24 epochs with a batch size of 8 on 8 A100 GPUs.

Semantic Scene Completion. We adopt the 2D UNet
based on a pretrained EfficientNetB7 [14] as 2D backbone
to generate multi-scale image features, which is the same
as MonoScene. Moreover, we set the resolution of TPV
planes as 128x128x16 to generate a 3D voxel feature tensor
of the same size as MonoScene, although our TPV planes
are 2D feature maps while MonoScene operates directly on
3D voxel features. We use RGB images from cam2 cropped
to 1220x370 as input and a feature dimension of 96. For
optimization, we employ the losses in MonoScene except
for the relation loss, since TPVFormer does not have the 3D
CRP module or any downsampling operation. For training,
we generally follow the recipe in MonoScene. Specifically,
we use a learning rate of 2e-4, a weight decay of 0.01, and
a cosine scheduler. We keep the other settings the same.
For a fair comparison, we also rerun the official code of
MonoScene with a cosine learning rate scheduler.

C. 3D Semantic Occupancy Prediction Results
We provide a video demo on our website1 for 3D seman-

tic occupancy prediction on nuScenes validation set with
a sampled image in Figure 1. Figure 2 provides detailed
visualization results of our model for four samples from
nuScenes validation set. For each sample, we present the
six surround camera images, the top view of the predicted
scene, and the zoomed-in results from three different an-
gles. In addition, we highlight predictions for small and
rare objects with circles and further link them to corre-
sponding ground truths in RGB images with arrowed dash
lines. Specifically, we highlight bicycles, motorcycles, and
pedestrians with red, blue, and yellow circles, respectively.
Note that although some of these objects are barely visible
in RGB images, our model still predicts them successfully.

D. LiDAR segmentation Results
In Table 1, we report the performance of TPVFormer

on nuScenes validation set for LiDAR segmentation. For
1https://wzzheng.net/TPVFormer/

Figure 2. More visualizations of the proposed TPVFormer.

a fair comparison, we replace the temporal module in BEV-
Former with self-attention moduel and use a feature di-
mension of 256 to make the model sizes of BEVFormer-
Base and TPVFormer-Base comparable. The mIoU of
TPVFormer-Base is on par with LiDAR-based meth-
ods despite critical modal differences. Furthermore, our
TPVFormer-Base achieves a 12.7% higher mIoU than
BEVFormer-Base, which demonstrates the effectiveness of
TPV in modeling fine-grained 3D structures of a scene.

E. Semantic Scene Completion Results
We present the semantic scene completion performance

on SemanticKITTI validation set in Table 2. Although
TPVFormer does not achieve the highest IoU for scene
completion, it outperforms other methods in mIoU with a
clear margin for semantic scene completion. We reproduce
MonoScene [2] with the official code in our environment
and also report its performance using the cosine learning
rate following our recipe for a fair comparison.



Table 1. LiDAR segmentation results on nuScenes validation set. Despite critical modal difference, our TPVFormer-Base achieves
comparable performance with LiDAR-based methods. Moreover, the mIoU gap between BEVFormer and TPVFormer clearly proves the
effectiveness of TPV in modelling fine-grained 3D structures of a scene.
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RangeNet++ [12] LiDAR 65.5 66.0 21.3 77.2 80.9 30.2 66.8 69.6 52.1 54.2 72.3 94.1 66.6 63.5 70.1 83.1 79.8
PolarNet [17] LiDAR 71.0 74.7 28.2 85.3 90.9 35.1 77.5 71.3 58.8 57.4 76.1 96.5 71.1 74.7 74.0 87.3 85.7
Salsanext [4] LiDAR 72.2 74.8 34.1 85.9 88.4 42.2 72.4 72.2 63.1 61.3 76.5 96.0 70.8 71.2 71.5 86.7 84.4
Cylinder3D++ [18] LiDAR 76.1 76.4 40.3 91.2 93.8 51.3 78.0 78.9 64.9 62.1 84.4 96.8 71.6 76.4 75.4 90.5 87.4

BEVFormer-Base [10] Camera 56.2 54.0 22.8 76.7 74.0 45.8 53.1 44.5 24.7 54.7 65.5 88.5 58.1 50.5 52.8 71.0 63.0
TPVFormer-Small (ours) Camera 59.3 64.9 27.0 83.0 82.8 38.3 27.4 44.9 24.0 55.4 73.6 91.7 60.7 59.8 61.1 78.2 76.5
TPVFormer-Base (ours) Camera 68.9 70.0 40.9 93.7 85.6 49.8 68.4 59.7 38.2 65.3 83.0 93.3 64.4 64.3 64.5 81.6 79.3

Table 2. Semantic scene completion results on SemanticKITTI validation set. For a fair comparison, we use the performances of
RGB-inferred versions of the first four methods reported in MonoScene [2]. ∗ represents the reproduced result using the official code. ∗∗

represents result using the cosine learning rate schedule.
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LMSCNet [13] Camera 28.61 6.70 40.68 18.22 4.38 0.00 10.31 18.33 0.00 0.00 0.00 0.00 13.66 0.02 20.54 0.00 0.00 0.00 1.21 0.00 0.00
3DSketch [3] Camera 33.30 7.50 41.32 21.63 0.00 0.00 14.81 18.59 0.00 0.00 0.00 0.00 19.09 0.00 26.40 0.00 0.00 0.00 0.73 0.00 0.00
AICNet [9] Camera 29.59 8.31 43.55 20.55 11.97 0.07 12.94 14.71 4.53 0.00 0.00 0.00 15.37 2.90 28.71 0.00 0.00 0.00 2.52 0.06 0.00
JS3C-Net [16] Camera 38.98 10.31 50.49 23.74 11.94 0.07 15.03 24.65 4.41 0.00 0.00 6.15 18.11 4.33 26.86 0.67 0.27 0.00 3.94 3.77 1.45
MonoScene∗ [2] Camera 36.86 11.08 56.52 26.72 14.27 0.46 14.09 23.26 6.98 0.61 0.45 1.48 17.89 2.81 29.64 1.86 1.20 0.00 5.84 4.14 2.25
MonoScene∗∗ [2] Camera 36.13 10.98 56.30 25.89 15.91 0.75 13.47 23.31 5.36 0.72 0.91 3.77 17.70 2.45 27.12 1.71 1.08 0.00 6.34 3.79 2.03
TPVFormer (ours) Camera 35.61 11.36 56.50 25.87 20.60 0.85 13.88 23.81 8.08 0.36 0.05 4.35 16.92 2.26 30.38 0.51 0.89 0.00 5.94 3.14 1.52

F. Inference Time for Each Component
We computed the inference time for each component in

Table 3. We see that the segmentation head and point query-
ing mechanism enjoy great efficiency, while the TPV en-
coder accounts for most of the latency. We think the high la-
tency of the TPV encoder might be due to the slow for loops
to filter out the inactive points in image cross-attention.
Table 3. Detailed inference time for each component. *:
0.0029s is the point querying time inside the segmentation head.

Image TPV Segmentation
Total (s)

backbone (s) encoder (s) head (s)

0.026 0.283 0.0032 (0.0029*) 0.312
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