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A. k-NN evaluation

We perform the k-NN classification over the learned rep-
resentations with £ = 200. For comparisons, we removed
all proposed components and reported the performance on
the representations learned in a pure unsupervised manner.
The clean labels are involved in testing but excluded in the
training phase. The results are shown in Tables A1 and A2.

The representations learned by our method have consis-
tently outperformed the unsupervised learning, regardless
of label noise with different ratios. These results indicate
that our method has maintained meaningful representations
better than the pure unsupervised learning model.

CIFAR-10
Sym. Asym.  Avg.
20% 50% 80% 90% 40%

k-NN (ours) 949 940 922 90.6 928 929
k-NN (unsup.) — 86.4

Noise type/rate

Table Al. k-NN evaluation on the learned representations of TCL
and unsupervised baseline on CIFAR-10.

CIFAR-100
Sym. Avg.
20% 50% 80% 90%

k-NN (ours) 767 726 673 64.1 70.2
k-NN (unsup.) — 53.8

Noise type/rate

Table A2. k-NN evaluation on the learned representations of TCL
and unsupervised baseline on CIFAR-100.
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B. Asymmetric Label Noise

Table B3 shows the results of TCL and TCL+ for CIFAR-
10/100 under different asymmetric ratios, where our method
has consistently outperformed the competitors.

We note that, unlike symmetric label noise, the classes
with above 50% asymmetric label noise cannot be distin-
guished, which makes 40% becomes the most extreme sce-
nario. In addition, we found that the asymmetric label noise
would make the dataset imbalance, where the assumption of
uniform distribution does not hold.

Here, we employ the class imbalance ratio r =
max({N,}X )/ min({N,}X ) used in long-tailed learn-
ing to measure whether the label distribution is uniform,
where K and N, are the numbers of classes and samples in
z-th class, respectively. The lower 7 is, the more uniform
the distribution becomes. For CIFAR-10 under the extreme
high asymmetric label noise (i.e. 40%), r = 2.40; that is,
the asymmetric label noise makes the dataset non-uniform.
However, TCL can still achieve pleasing performance on
non-uniform datasets, which suggests that TCL can effec-
tively detect those mislabeled samples to form a uniform
distribution. Specifically, for those clean samples (clean
probability w; > 0.5), r = 1.37, which is much more bal-
anced over noisy labels.

CIFAR-10 CIFAR-100

10% 20% 30% 10% 20% 30% 40%

DivideMix [20] 93.8 932 925 69.5 692 683 510
ELR[25] 944 933 915 75.8 748 173.6 170.0
Sel-CL+[23] 95.6 952 945 787 715 164 742

TCL (ours) 95.1 947 944 782 76.8 755 73.1
TCL+ (ours) 959 953 948 79.0 78.0 769 744

Table B3. Comparisons with SOTAs under asymmetric label noise.



