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In this supplementary material, we detail the experimen-

tal setup in Section 1, including detailed introduction to

datasets in Section 1.1, hyperparameter configurations in

Section 1.2, and more implementation details of ablation

experiments in Section 1.3. Moreover, we provide more ex-

perimental results in Section 2, including (i) ablation stud-

ies for noise types and decoupling levels in Sections 2.1,

2.2, respectively, and (ii) more quantitative and qualitative

results in Sections 2.3 and 2.4, respectively.

1. More Details about Experiment Setup

1.1. Detailed Introduction to the Datasets

Three datasets, i.e., Magazine [9], Rico [2], and Pub-

LayNet [10], are adopted in our experiments. Since the data

splitting protocols for training and testing are not consistent

over different publications, we thus re-implement the pro-

posed methods in them and report the experiment results

with the same data splitting protocols introduced below for

fair comparison.

• Magazine [9] contains total 4K+ images of magazine

pages. We use 85% of the dataset for training, 5% for val-

idation, and 10% for testing. The categories in the dataset

include text, image, headline, text-over-image, headline-
over-image, and background.

• Rico [2] is a dataset of mobile app UI that contains 66K+

UI layouts. We randomly select 85% of the dataset for

training, 5% for validation, and 10% for testing. Fol-

lowing the common practices in previous works [4–6],

we exclude elements whose labels are not in the 13 most

frequent labels from using. The adopted categorise are

Toolbar, Image, Text, Icon, Text Button, Input, List Item,

Advertisement, Pager Indicator, Web View, Background
Image, and Drawer,Modal. Following the common prac-

tices in previous works [5, 7, 8], we also exclude the lay-

outs with more than 25 elements since these layouts are

rare but may lead to low training efficiency.

*This work was done when Mude Hui was an intern at MSRA.

• PubLayNet [10] contains 360K+ document layout exam-

ples crawled from the Internet. We adopt the full official

training split for training, 33% of the official validation

split for validation, and the rest of the validation split for

testing. This dataset contains elements from 5 catgories,

e.g., Text, Title, List, Table, and Figure. Following the

common practices in previous works [5, 7, 8], similar to

that for Rico, we exclude the layouts with more than 25

elements for improving the training efficiency.

1.2. Hyperparameter Configurations

In our proposed LDGM, the hyperparameter βc
t controls

the transition probability from a category to the other one,

which increases from 0 to 0.02/Kc as time t increases from

0 to T . Here, Kc is the number of adopted element cate-

gories in layouts, which varies for different datasets. For

attributes x, y, h, w, σt controls the transition probability

from one discrete to the other. σx
t , σy

t , σh
t and σw

t increase

from 0 to 0.02 as time t increases from 0 to T . For all

attributes c, x, y, h, w, the hyperparameter γt denotes the

probability of masking a discrete value as an absorbing sta-

tus. γc
t , γx

t , γy
t , γh

t and γw
t increase from 0 to 0.032 as time

t increases from 0 to T . We adopt the same hyperparameter

configurations in all experiments for fair comparison.

1.3. Implementation Details of Ablation Study on
Decoupled Corruption Strategy

In this section, we introduce more implementation de-

tails of the four different diffusion strategies in the abla-

tion study for our proposed decoupled diffusion strategy

(i.e., the first experiment in Section 5.4 of our main pa-

per). We provide their corresponding illustrations in Fig-

ure 1. The algorithm descriptions for Non-decoupled strat-
egy, Partial-decoupled strategy and Sequential-decoupled
strategy are placed in Algorithm 1, Algorithm 2 and Al-

gorithm 3, respectively. The algorithm description for our

proposed strategy, i.e., Parallel-decoupled strategy (ours),
has been placed in Algorithm 1 of our main paper.
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(d) Parallel-decoupled strategy (ours)

Figure 1. Illustrations of different decoupled corruption strategies. The x-axis represents the overall timestep t from 1 to R, while the

y-axis represents individual timesteps tc, ts, and tp for different attributes respectively in the corresponding algorithms.

Algorithm 1 Non-decoupled strategy

Require: Max diffusion steps T
1: l ← sample a layout from the training set

2: l̂ ← RandSelect(l) � Select attributes for diffusion.

3: l̂ ← [C,P, S] � Group l̂ upon the semantics.

4: sample t ∼ Uniform({1, · · · , T})
5: for x in C do
6: tc ← t
7: x = xtc ← sample from q(xtc |x0)
8: end for
9: for x in P do

10: tp ← t
11: x = xtp ← sample from q(xtp |x0)
12: end for
13: for x in S do
14: ts ← t
15: x = xts ← sample from q(xts |x0)
16: end for

2. More Experiment Results

We further investigate the effectiveness of our pro-

posed decoupled diffusion strategy by comparing different

adopted noise types and decouple degrees/levels for diffu-

sion. All experiments are performed on the Rico dataset and

the Gen-PCM task.

2.1. Ablation Study for Noise Types

In our proposed LDGM, we add different types of noises

for the diffusion processes of different types of attributes as

introduced in our main paper. Specifically, we adopt uni-

form noise for category c, while adopting Gaussian noise

Table 1. Experiment results on the Rico dataset by varying the

noise type on input tokens.

Model MaxIoU ↑ FID ↓ Align. ↓ Overlap ↓
Uniform 0.16 61.24 0.53 106.04

Band-diagonal 0.29 47.74 0.49 88.30

Gaussian (Ours) 0.59 21.59 0.40 54.77

for location (x, y) and size (w, h). In fact, it does not make

sense to adopt other types of noises for category c since

it is hard to measure the “distance” between different cat-

egories. Therefore, here, we validate the effectiveness of

adopting Gaussian noise for position (x, y) and size (w, h)
by comparing it to adopting another two types of noises to

diffusion. One is using the uniform noise that is the same

as the one adapted to category. The other is adopting band-

diagonal noise [1], with the one for h as an example, which

can be formulated as:

[αh
t ]ij = 1−∑Kh

j=0,j �=i[Q
h
t ]ij , (1)

[βh
t ]ij =

{
1
Kσh

t if 0 < |i− j| ≤ v

0 else
(2)

where Qh
t denotes the transition matrix for height h. Kh

is the number of possible values for h. γh
t and σh

t are two

hyperparameters that increase linearly as time t increases.

The comparison results are in Table 2. We can find that

adopting Gaussian noise for position (x, y) and size (w, h)
as we propose in LDGM is the most effective design choice.

This is because adopting Gaussian noise corresponds to

a distance-aware noise adding (diffusion) strategy, while



Algorithm 2 Partial decoupled strategy

Require: Max diffusion steps T , overlap 0.3T
1: l ← sample a layout from the training set

2: l̂ ← RandSelect(l) � Select attributes for diffusion.

3: l̂ ← [C,P, S] � Group l̂ upon the semantics.

4: sample t ∼ Uniform({1, · · · , 1.6T})
5: for x in C do
6: if t < 0.6T then
7: tc ← 1
8: else
9: tc ← t− 0.6T

10: end if
11: x = xtc ← sample from q(xtc |x0)
12: end for
13: for x in P do
14: if t < 0.3T then
15: tp ← 1
16: else if t > 1.3T then
17: tp ← T
18: else
19: tp ← t− 0.3T
20: end if
21: x = xtp ← sample from q(xtp |x0)
22: end for
23: for x in S do
24: if t < T then
25: ts ← t
26: else
27: ts ← T
28: end if
29: x = xts ← sample from q(xts |x0)
30: end for

adopting uniform noise can not achieve this and adopting

band-diagonal noise provides limited distance awareness.

2.2. Ablation Study for Decoupling Levels

In our proposed diffusion strategy of LDGM, we decou-

ple the diffusion processes for different attributes according

to attribute types. To validate the effectiveness of this pro-

posed design, we compare it with three other design choices

with different decoupling levels: (i) Non-decoupling: all at-

tributes are corrupted with a shared timeline without decou-

pling. (ii) Element-level decoupling: attribute tokens corre-

sponding to the same layout element are corrupted with a

shared timeline. (iii) Token-level decoupling: all attribute

tokens are corrupted with their individual timelines (i.e.,

maximum decoupling). (iv) Ours: attribute tokens of the

same type are corrupted with a shared timeline as we pro-

posed in our main paper.

The corresponding comparison results are in Table 2. We

find that our proposed design in LDGM is the most effective

Algorithm 3 Sequential-decoupled strategy

Require: Max diffusion steps T
1: l ← sample a layout from the training set

2: l̂ ← RandSelect(l) � Select attributes for diffusion.

3: l̂ ← [C,P, S] � Group l̂ upon the semantics.

4: sample t ∼ Uniform({1, · · · , 3T})
5: for x in C do
6: if t < 2T then
7: tc ← 1
8: else
9: tc ← t− 2T

10: end if
11: x = xtc ← sample from q(xtc |x0)
12: end for
13: for x in P do
14: if t < T then
15: tp ← 1
16: else if T < t < 2T + 1 then
17: tp ← t− T
18: else
19: tp ← T
20: end if
21: x = xtp ← sample from q(xtp |x0)
22: end for
23: for x in S do
24: if t < T then
25: ts ← t
26: else
27: ts ← T
28: end if
29: x = xts ← sample from q(xts |x0)
30: end for

Table 2. Comparison results for the models with different decou-

pling levels on the Rico dataset.

Model MaxIoU ↑ FID ↓ Align. ↓ Overlap ↓
Non-decoupling 0.56 29.24 0.43 60.04

Element-level 0.56 27.71 0.48 64.04

Token-level 0.58 23.58 0.41 57.09

Ours 0.59 21.59 0.40 54.77

one compared to the other three. This is because we decou-

ple the diffusion processes upon the attribute types, yielding

a semantics-aware decoupling strategy.

2.3. More Quantitative Results

The quantitative results in Section 5.2 of our main pa-

per are the mean values averaged over 5 runs with different

random seeds. In this section, we supplement these quanti-

tative results by further reporting their corresponding stan-

dard deviations. The results on Magazine, Rico and Pin-



LayNet datasets are in Tables 3, 4, and 5, respectively.

2.4. More Qualitative Results

In our main paper, we introduce four more general lay-

out generation task settings which can cover the existing

ones defined in previous works. They are Gen-PM, Gen-
CM, Gen-PC and Gen-PCM. All six available layout gen-

eration subtasks defined in previous could be all considered

as the special cases of them. In this section, we provide the

qualitative generation results on Gen-PM, Gen-CM, Gen-
PC and Gen-PCM in Figure 2. Note that to the best of our

knowledge, no previous works can support them so that we

are not allowed to compare our proposed LDGM with oth-

ers on these newly proposed task settings. We make the first

endeavour to achieve such comprehensive versatility.

2.5. Results of Rendered Images

We show the results of rendered images upon the gen-

erated layouts by our proposed LDGM in Figure 3. These

rendered images help visually demonstrate the quality of

our generated layouts.
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Table 3. Experiment results of different layout generation subtasks on the Magazine dataset. Align. denotes the alignment metric.

Subtasks Methods
Magazine

MaxIoU ↑ FID ↓ Align. ↓ Overlap ↓

UGen

LayoutTransformer [3] 0.18 ± 0.03 47.84 ± 1.03 0.59 ± 0.03 47.98 ± 0.87

BLT [6] 0.20 ± 0.04 44.91 ± 1.56 0.55 ± 0.05 55.56 ± 1.05

UniLayout [4] 0.31 ± 0.01 36.61 ± 1.23 0.49 ± 0.03 44.50 ± 1.02
LDGM (Ours) 0.38 ± 0.00 32.73 ± 0.62 0.47 ± 0.01 46.43 ± 0.98

Gen-T

LayoutGAN++ [5] 0.26 ± 0.01 36.35 ± 0.77 0.54 ± 0.02 58.44 ± 0.73

BLT [6] 0.22 ± 0.04 48.26 ± 1.96 0.69 ± 0.03 64.01 ± 1.43

UniLayout [4] 0.32 ± 0.01 28.37 ± 1.26 0.51 ± 0.03 53.56 ± 1.02

LDGM (Ours) 0.36 ± 0.01 24.67 ± 0.43 0.45 ± 0.03 45.11 ± 0.79

Gen-TS

BLT [6] 0.33 ± 0.03 22.72 ± 1.54 0.59 ± 0.01 61.94 ± 1.00

UniLayout [4] 0.35 ± 0.01 19.35 ± 0.72 0.58 ± 0.03 56.43 ± 1.02

LDGM (Ours) 0.37 ± 0.02 17.65 ± 0.57 0.45 ± 0.02 44.25 ± 0.56

Gen-TR

CLG-LO [5] 0.27 ± 0.01 33.88 ± 1.31 0.59 ± 0.05 59.43 ± 1.39

UniLayout [4] 0.36 ± 0.01 19.24 ± 0.88 0.54 ± 0.03 49.61 ± 0.74

LDGM (Ours) 0.39 ± 0.02 20.58 ± 0.45 0.48 ± 0.03 47.27 ± 0.80

Refinement

RUITE 0.24 ± 0.03 44.27 ± 1.32 0.64 ± 0.05 54.26 ± 1.41

UniLayout [4] 0.33 ± 0.01 19.78 ± 0.70 0.49 ± 0.03 49.02 ± 0.96

LDGM (Ours) 0.39 ± 0.00 14.95 ± 0.68 0.42 ± 0.01 37.22 ± 0.51

Completion

LayoutTransformer [3] 0.17 ± 0.03 39.36 ± 1.83 0.67 ± 0.02 55.32 ± 0.76

UniLayout [4] 0.23 ± 0.01 28.78 ± 1.60 0.52 ± 0.03 46.43 ± 0.64

LDGM (Ours) 0.38 ± 0.00 24.35 ± 0.43 0.49 ± 0.01 39.26 ± 0.49
Gen-PM

LDGM (Ours)

0.38 ± 0.01 27.33 ± 0.54 0.47 ± 0.01 39.02 ± 0.39

Gen-CM 0.37 ± 0.02 28.74 ± 0.79 0.51 ± 0.01 43.25 ± 0.71

Gen-PC 0.37 ± 0.01 22.56 ± 0.62 0.47 ± 0.00 42.95 ± 0.30

Gen-PCM 0.37 ± 0.01 24.45 ± 1.21 0.49 ± 0.01 44.41 ± 0.89

GT - 0.41 9.89 0.43 34.27



Table 4. Experiment results of different layout generation subtasks on the Rico dataset. Align. denotes the alignment metric.

Subtasks Methods
Rico

MaxIoU ↑ FID ↓ Align. ↓ Overlap ↓

UGen

LayoutTransformer [3] 0.46 ± 0.03 46.64 ± 0.97 0.66 ± 0.02 64.10 ± 0.94

BLT [6] 0.51 ± 0.01 33.81 ± 1.56 0.59 ± 0.04 67.33 ± 0.71

UniLayout [4] 0.62 ± 0.01 26.68 ± 0.74 0.40 ± 0.03 59.26 ± 0.76

LDGM (Ours) 0.62 ± 0.01 26.06 ± 0.40 0.36 ± 0.03 56.35 ± 0.71

Gen-T

LayoutGAN++ [5] 0.46 ± 0.00 34.43 ± 1.13 0.58 ± 0.02 59.85 ± 0.85

BLT [6] 0.44 ± 0.03 39.64 ± 1.71 0.57 ± 0.01 56.83 ± 1.45

UniLayout [4] 0.55 ± 0.01 18.06 ± 0.70 0.48 ± 0.03 57.92 ± 0.94

LDGM (Ours) 0.58 ± 0.01 16.64 ± 0.46 0.39 ± 0.03 55.87 ± 0.64

Gen-TS

BLT [6] 0.51 ± 0.03 42.88 ± 1.26 0.46 ± 0.02 57.74 ± 0.47

UniLayout [4] 0.55 ± 0.01 20.42 ± 0.40 0.49 ± 0.02 58.72 ± 0.36

LDGM (Ours) 0.62 ± 0.01 12.59 ± 0.37 0.35 ± 0.01 55.92 ± 0.39

Gen-TR

CLG-LO [5] 0.38 ± 0.02 38.89 ± 0.79 0.54 ± 0.02 56.51 ± 0.80
UniLayout [4] 0.57 ± 0.01 26.38 ± 0.92 0.46 ± 0.02 66.93 ± 0.52

LDGM (Ours) 0.61 ± 0.01 16.98 ± 0.40 0.39 ± 0.01 58.75 ± 0.66

Refinement

RUITE 0.46 ± 0.03 36.70 ± 0.70 0.57 ± 0.02 64.13 ± 1.94

UniLayout [4] 0.56 ± 0.01 24.41 ± 0.57 0.42 ± 0.01 56.04 ± 0.65

LDGM (Ours) 0.62 ± 0.00 13.19 ± 0.40 0.33 ± 0.01 52.17 ± 0.58

Completion

LayoutTransformer [3] 0.46 ± 0.03 36.15 ± 0.64 0.66 ± 0.02 67.10 ± 0.65

UniLayout [4] 0.59 ± 0.01 25.18 ± 0.42 0.45 ± 0.04 55.99 ± 0.92

LDGM (Ours) 0.60 ± 0.01 16.42 ± 0.66 0.36 ± 0.03 53.15 ± 0.64
Gen-PM

LDGM (Ours)

0.58 ± 0.01 21.64 ± 0.50 0.38 ± 0.03 56.56 ± 0.85

Gen-CM 0.57 ± 0.03 26.15 ± 0.46 0.38 ± 0.03 57.74 ± 0.79

Gen-PC 0.60 ± 0.01 18.13 ± 0.33 0.36 ± 0.00 53.67 ± 0.46

Gen-PCM 0.59 ± 0.01 21.59 ± 0.75 0.40 ± 0.01 54.77 ± 0.70

GT - 0.66 7.05 0.26 49.86



Table 5. Experimental results of different layout generation subtasks on the PublayNet dataset. Align. denotes the alignment metric.

Subtasks Methods
PubLayNet

MaxIoU ↑ FID ↓ Align. ↓ Overlap ↓

UGen

LayoutTransformer [3] 0.32 ± 0.01 49.72 ± 1.81 0.37 ± 0.01 36.63 ± 0.43

BLT [6] 0.34 ± 0.01 48.24 ± 0.68 0.27 ± 0.04 42.79 ± 0.53

UniLayout [4] 0.33 ± 0.01 32.29 ± 0.56 0.22 ± 0.02 22.19 ± 0.22

LDGM (Ours) 0.46 ± 0.01 25.94 ± 0.41 0.25 ± 0.01 19.83 ± 0.19

Gen-T

LayoutGAN++ [5] 0.36 ± 0.01 30.48 ± 0.75 0.19 ± 0.02 32.80 ± 0.42

BLT [6] 0.37 ± 0.03 44.86 ± 0.66 0.21 ± 0.03 38.21 ± 0.43

UniLayout [4] 0.41 ± 0.01 27.34 ± 0.96 0.20 ± 0.02 20.98 ± 0.37

LDGM (Ours) 0.44 ± 0.01 20.69 ± 0.36 0.15 ± 0.02 16.88 ± 0.39

Gen-TS

BLT [6] 0.40 ± 0.00 24.32 ± 0.73 0.16 ± 0.02 31.06 ± 0.58

UniLayout [4] 0.43 ± 0.01 27.47 ± 0.85 0.16 ± 0.01 23.82 ± 0.66

LDGM (Ours) 0.47 ± 0.01 19.02 ± 0.35 0.16 ± 0.01 10.09 ± 0.38

Gen-TR

CLG-LO [5] 0.38 ± 0.02 31.87 ± 0.82 0.21 ± 0.03 34.39 ± 0.59

UniLayout [4] 0.46 ± 0.01 27.73 ± 0.84 0.17 ± 0.02 27.35 ± 0.61

LDGM (Ours) 0.44 ± 0.01 19.54 ± 0.43 0.16 ± 0.01 21.28 ± 0.54

Refinement

RUITE 0.32 ± 0.01 41.72 ± 0.99 0.49 ± 0.01 35.74 ± 1.89

UniLayout [4] 0.44 ± 0.01 22.34 ± 0.87 0.11 ± 0.01 27.23 ± 0.73

LDGM (Ours) 0.48 ± 0.01 15.28 ± 0.59 0.10 ± 0.01 13.05 ± 0.42

Completion

LayoutTransformer [3] 0.32 ± 0.01 41.72 ± 0.81 0.37 ± 0.01 39.81 ± 0.20

UniLayout [4] 0.41 ± 0.01 32.04 ± 0.55 0.19 ± 0.02 22.90 ± 0.29

LDGM (Ours) 0.44 ± 0.01 25.31 ± 0.60 0.10 ± 0.00 19.45 ± 0.28
Gen-PM

LDGM (Ours)

0.46 ± 0.01 23.58 ± 0.18 0.10 ± 0.00 14.11 ± 0.29

Gen-CM 0.44 ± 0.01 24.94 ± 0.24 0.11 ± 0.01 16.26 ± 0.47

Gen-PC 0.50 ± 0.01 16.42 ± 0.18 0.09 ± 0.01 12.51 ± 0.11

Gen-PCM 0.42 ± 0.00 25.76 ± 0.59 0.14 ± 0.01 19.68 ± 0.58

GT - 0.64 9.38 0.008 5.18
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Figure 2. Qualitative results on general layout generation tasks(Gen-CM,Gen-PC,Gen-PC,Gen-PCM).M represents missing attribute, x

represents coarse attribute, and x represents precise attribute.
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