
SplineCam: Exact Visualization of Deep Neural Network Geometry and Decision
Boundary

Supplementary Materials
Codes available at SplineCAM Github

Google Colab demo https://bit.ly/splinecam-demo

We provide the following supplementary materials (SMs)
as support of our theoretical and empirical claims. This SM
is organized as follows.

Appendix A provides the necessary background results for
SplineCam and elaborates on how any deep neural network
or implicit neural representation function with piecewise
contiuous affine activations are max affine splines. Ap-
pendix B provides further implementation details, extend-
ing from Sec. 2.2 and including hardware and software re-
quirements.

Appendix C elaborates on the computational complexity of
the method. We present experiments assessing the time
complexity of SplineCam varying the width of a single
layer MLP and varying the volume of the input domain for
VGG11. In Appendix D we present new experiments, first
Appendix D.1 discusses the change of partition character-
istics with training epochs and while varying architecture
parameters (e.g., width for MLP and number of filters for a
CNN). We also present the change of characteristics across
different parts of the input space, e.g., around training sam-
ples, test samples and regions off the data manifold. In Ap-
pendix D.2 we present quantitative results on the variation
of partition statistics while varying the orientation of the 2D
input domain of interest. We see that the variation is con-
siderably low between random orientation, showing that a
single 2D slice can possibly be good enough to characterize
the partition in different parts of the input space. Finally,
in Appendix E we expand on the usage of SplineCam and
present code blocks as explainers for how the SplineCam
framework operates.

A. Background on Continuous Piecewise
Affine Deep Networks

A max-affine spline operator (MASO) concatenates inde-
pendent max-affine spline (MAS) functions, with each MAS
formed from the point-wise maximum of R affine map-
pings [14, 24]. For our purpose each MASO will express
a DN layer and is thus an operator producing a Dℓ dimen-
sional vector from a Dℓ−1 dimensional vector and is for-
mally given by

MASO(v; {Ar, br}Rr=1) = max
r=1,...,R

Arv + br, (7)

Figure 10. Time complexity of computing the partition regions
(Top) and growth of the number of regions with width (Bottom),
for a single layer randomly initialized MLP with varying width (n)
and input dimensionality. For all the input dimensions, we take a
randomly oriented, square 2D domain centered on the origin, with
an area of 4 units. Note that with increasing input dimensionality,
we get reduced number of hyperplane intersections with our 2D
domain of interest, therefore we can see a slight reduction in the
wall time required and also the number of regions.

where Ar ∈ RDℓ×Dℓ−1

are the slopes and br ∈ RDℓ

are the offset/bias parameters and the maximum is taken
coordinate-wise. For example, a layer comprising a fully
connected operator with weights W ℓ and biases bℓ fol-
lowed by a ReLU activation operator corresponds to a (sin-
gle) MASO with R = 2,A1 = W ℓ,A2 = 0, b1 =
bℓ, b2 = 0. Note that a MASO is a continuous piecewise-
affine (CPA) operator [38].

The key background result for this paper is that the layers
of DNs constructed from piecewise affine operators (e.g.,

1

https://bit.ly/splinecam-git
https://bit.ly/splinecam-demo


convolution, ReLU, and max-pooling) are MASOs [2]:

∃R ∈ N∗,∃{Ar, br}Rr=1 (8)

s.t. MASO(v; {Ar, br}Rr=1) = gℓ(v),∀v ∈ RDℓ−1

, (9)

making any Implicit Neural Representation or even Deep
Generative Networks a composition of MASOs.
The CPA spline interpretation enabled from a MASO for-
mulation of DNs provides a powerful global geometric in-
terpretation of the network mapping based on a partition of
its input space RS into polyhedral regions and a per-region
affine transformation producing the network output. The
partition regions are built up over the layers via a subdivi-
sion process and are closely related to Voronoi and power
diagrams [4].

Figure 11. Time complexity of computing the partition re-
gions Top and average region volume (ARV) Bottom while in-
creasing the area of the input domain, for a VGG11 trained on
tinyimagenet-200. Each line corresponds to one of 10 training
samples anchored on which the 2D input domains are defined,
with random orientations. We see that the required time scales
linearly with the size of the input domain. Apart from that, we see
that as the neighborhood size is increased for some samples, the
ARV increases and then decreases again. This could indicate that
while the ARV is small for smaller neighborhoods around training
samples while farther away larger regions appear and cause the
transient behavior in the curves.

B. Implementation Details
In Sec. 2.2 we provide a summary of how SplineCam works.
In this section we provide details about SplineCam imple-
mentation and algorithm.

SplineCam is implemented using Pytorch [30] and Graph-
tool [31]. All the linear algebra operations are performed
using Pytorch and are scalable using GPUs. The region
finding operation on the other hand is single threaded. This
can be a bottleneck in cases, for example, with DNNs that
have more than one layer. In this case, distributing regions
across threads, as pairs of hyperplane-sets and a polygon,
can result in significant speedups.

Since finding the regions involve solving systems of linear
equations, most of the opearations in SplineCam require
double precision. This can introduce significant memory
bottlenecks, especially for large convolutional layers with
multiple channels of input and output; for such layers the
size of the corresponding Toeplitz matrix representation be-
comes significantly large with large number of input and
output channels. For this reason, we always store such
weight matrices as sparse matrices and query rows only
when required. We also replace max pool layers with aver-
age pool layers for simplicity; in our experiments involving
VGG16 and VGG11, we replace the maxpool after the first
conv with an average pool and use strided convolutions for
deeper layers. Unless specified, we always consider square
2D domains in the input. While characterizing we use the
terms volume and area of the regions interchangeably.

In Suppl. E, we provide details on how SplineCam can be
used, with modular codes showing how it computes the
partition in a layerwise fashion. We also provide a pseu-
docode for the search algorithm we have proposed to find
regions given a graph formed via polygon-hyperplane inter-
sections. All the reported computation times were evaluated
on a setup consisting of 8x NVIDIA QUADRO RTX 8000
48GB GPUs and 2x Intel Xeon Gold 5220R.

C. Computational Complexity
In this section we present two sets of experiments that we
have performed to assess the computational complexity of
SplineCam.

Varying width for a single layer MLP. As we have dis-
cussed earlier and have elaborated in Suppl. E, SplineCam
performs region wise partition operations, which can be par-
allelized across sets of regions. To assess the per region
performance of SplineCam, we do the following experi-
ment. We take an uninitialized 1 layer ReLU-MLP with
n neurons and D input dimensionality. The number of
neurons is equal to the number of hyperplanes that would
partition space. We vary n ∈ {10...980} and also vary

2



Figure 12. Evolution of average region volume (ARV) for 55 different randomly oriented square domains of the input space. Out of the
55 domains, 25 are centered on CIFAR10 training samples, 25 on test samples and 5 on random locations in the input space. We train a 8
layer CNN as detailed in Suppl. D.1. We notice that as training progresses, the ARV around points on the data manifold gets reduced. For
points off the manifold ARV reduces as well, for CNN x8 CIFAR10 it reduces significantly while for CNN x32 it doesn’t. In all cases, the
off manifold ARV remains larger than the on manifold ARV at 100 training epochs.

D ∈ {2, 2002, 4002, 6002, 8002} and plot in Fig. 10 the
wall time in seconds, required to compute the partition. As
the input domain, we consider a randomly oriented 2D do-
main centered on the origin with 4sq unit area. We see
that the computation time complexity is upper bounded by
O(n2/5000) within the range of n in question. With in-
creasing D we see a reduced number of hyperplane inter-
sections, therefore we see a reduction in required time.

Effect of the area of the input domain. For this experi-
ment, we take a VGG11 model and increase the size (area)
of the input domain. We present the wall time vs area plot in
Fig. 11. We can see that increasing the area (or volume) of
the input region, monotonically increases the required time
for computing the partition, in approximately a linear fash-
ion. Even though increasing the area of the input domain
should increase the number of first layer intersections, we
see that the effect of that remains linear within the range.
Note that, we can also scale the area of the input domain by
breaking the input domain into multiple 2D polygonal re-
gions of equal area and using separate threads/gpus to per-
form computation. This way we can also parallelize the
partition computation and scale across memory instead of
time.

D. Extra Experiments
D.1. Evolution of partition statistics while training

MLP trained on MNIST. For this experiment we train
an MLP with depth 5 and width ∈ {8, 16, 32, 16, 128}.
We train the MLPs for 50 training epochs on the MNIST
dataset, and evaluate the partition statistics via SplineCam,
for 25 training and 25 validation samples of randomly se-
lected from MNIST. We present average region volume

(ARV) distributions per training epoch in Fig. 14. The first
thing to notice is that for smaller width networks, ARV is
bimodal across all epochs, while for width 64 and onwards,
the mode with higher volume regions vanishes. ARV also
shifts towards lower volumes as the width of the networks
are increased. While training samples tend to have lower
ARV, the lower ends of the distributions differ between
training and test samples; for widths 32, 64, and 128 we see
distinct low ARV tails which are not visible for the test sam-
ples. This shows that for some of the training samples, the
partition regions of the network are smaller, indicating that
the model has more representation capacity for such sample
neighborhoods [28]. This could be a possible indication for
memorization of some training samples. Another thing to
notice is that during the first epoch, the avg partition vol-
umes are significantly lower. As training progresses, first
ARV shifts to the right (larger) and then slowly shifts to the
left. As we increase width, the starting ARV of the network
becomes small in general compared to the ARV for the last
training epoch. In Fig. 15 we also present the distributions
of the number of regions (NR) in the neighborhood of the
same samples used for Fig. 14.

CNN trained on CIFAR10. For this experiment, we train
an 8 layer CNN with 6 convolutional layers and 2 fully con-
nected layers. The number of filters for the convolutional
layers are set as {⌊ℓ/2⌋ × mul : ℓ = 1...6}, where ⌊.⌋
is the floor operation, and mul ∈ {8, 16, 32} is a width
multiplier. We see that, similar to Fig. 14, the ARV gets
reduced with increased width. For training, we can see
longer tails towards lower ARV, indicating denser regions
near some training samples. One thing that is noticeable
here is that contrary to MLPs, the ARV of neighborhoods
near training samples monotonically decrease in most cases

3



Figure 13. Partition visualization for a VGG11 model trained on
TinyImagenet. We take 10 samples from the training set for which
the model posteriors have the lowest entropy, and present here
neighborhoods for two samples with high partition density (Left)
and two samples with low partition density (Right). We also high-
light in red, the sets of points for which any two classes from the
dataset has equal probability. We see that the denser partition re-
gions have more such lines compared to sparser regions, suggest-
ing correlations with generalization [35]

for the CNNs. This could be due to the complexity of the
task, CIFAR10 classification being a harder task compared
to MNIST, the region density is required to be significantly
higher compared to early training.

We also visualize in Fig. 12 the evolution of ARV with
training epochs for CNNs with different width multipliers.
We visualize for 25 training, 25 test and 5 random sam-
ples, a randomly oriented 2D neighborhood. We notice that
as training progresses, the ARV around points on the data
manifold gets reduced. For points off the manifold ARV re-
duces as well, for CNN x8 CIFAR10 it reduces significantly
while it doesn’t as much for CNN x32. In all cases, the off
manifold ARV remains larger than the on manifold ARV at
100 training epochs.

D.2. Variation of region statistics between random
orientations

For this experiment we take 5 random training samples from
TinyImagenet and calculate partition statistics for 20 ran-
domly oriented 2D domains with area 0.005, centered on
each sample. To assess the variability between different
2D domains we first look at the region volume (RV) statis-

tic for the partition generated by a VGG11 model. Re-
gion volumes can vary both for a given 2D input domain
and between different input domains. The maximum in-
domain RV standard deviation over 20 different orientations
is {7.3955e − 07, 2.2665e − 07, 3.0617e − 06, 1.0149e −
06, 2.2171e − 06} for each sample. The between orienta-
tion ARV standard deviation is {5.5993e − 08, 7.4666e −
09, 1.3462e−07, 3.9948e−08, 1.2935e−07} for each sam-
ple, which is an order smaller than the in-domain RV stan-
dard deviation. This is an indication that SplineCam statis-
tics for a single 2D slice could possibly be accurate enough
to not require multiple 2D slices, even for high dimensional
inputs.

D.3. Extra Figures

In the following section we present some figures comple-
menting the experiments done above.

4



Train Test

Figure 14. Distribution of average region volume (ARV) across
training epochs, in the neighborhood of 25 train (Left) and 25
test (Right) samples from MNIST. We train an MLP with depth
5 and vary its width between {8, 16, 32, 16, 128}. ARV is consid-
erably large and bimodal for smaller widths; as network width is
increased ARV becomes smaller and unimodal, with long smaller
volume tails for training samples. This discrepancy between train-
ing and test samples, possibly indicates memorization.

Train Test

Figure 15. Distribution of number of regions (NR) across train-
ing epochs, in the neighborhood of 25 train (Left) and 25 test
(Right) samples from MNIST. We train an MLP with depth 5
and vary its width between {8, 16, 32, 16, 128}. NR is small for
smaller widths and increases significantly as the network width is
increased. For larger networks, the distributions have large NR
tails. We can also see a shift towards lower NR right after epoch
1 and a slow shift of the distribution towards larger NR as training
progresses.

5



Train Test

Figure 16. Distribution of average region volume (ARV) across
training epochs, in the neighborhood of 25 train (Left) and 25 test
(Right) samples from CIFAR10. We train a CNN with 6 convolu-
tional layers and 2 fully connected layers. The number of filters for
the layers are set as {⌊ℓ/2⌋ ×mul : ℓ = 1...6}, where ⌊.⌋ is the
floor operation, and mul ∈ {8, 16, 32} is a width multiplier. We
see that, similar to Fig. 14, the ARV gets reduced with increased
width. For training, we can see longer tails towards lower ARV,
indicating that for some training samples the regions become very
small. For both train and test, with increasing number of epochs,
the ARV distribution mean shifts towards lower ARV.

Train Test

Figure 17. Distribution of number of regions (NR) across training
epochs, in the neighborhood of 25 train (Left) and 25 test (Right)
samples from CIFAR10. We train a CNN with 6 convolutional
layers and 2 fully connected layers. The number of filters for the
layers are set as {⌊ℓ/2⌋ × mul : ℓ = 1...6}, where ⌊.⌋ is the
floor operation, and mul ∈ {8, 16, 32} is a width multiplier. We
see that, similar to Fig. 15, the NR significantly increases with in-
creased width. For training, we can see longer tails towards higher
NR, indicating that for some training samples there is high region
density in the neighborhood. For both train and test, with increas-
ing number of epochs, the NR distribution mean shifts towards
higher NR.

6



Figure 18. Partition visualization of a randomly initialized single layer MLP with 1000 hyperplanes and input dimensionality of 8002 for
a randomly oriented 2D square domain centered on the origin. The partition contains 132569 regions and takes 134s to compute.

7



Figure 19. Partition visualization of a convolutional neural network, trained for binary classification of tinyimagenet Tabby Cat and
Egyptian Cat classes. Left Samples that are used as anchor points to determine the 2D slice with an area of 450 units. Middle The
partitioning of input space induced by the model as well as the decision boundary (in red). Right Randomly sampled points from the
decision boundary. Samples from the decision boundary visually represent a linear combination of the three anchor samples, while the
weights are determined by the non-linear decision boundary. For example, for the top and bottom rows, samples from the boundary look
biased towards two of the three anchor points. Computing the partition regions take 7.46 mins, 13.96 mins and 5.02 mins respectively, with
each of the partitions containing 82817, 119895, and 60455 regions. The number of regions is positively correlated with the curvature of
the decision boundary in the neighborhood.

8



Figure 20. Training and visualizing the partition of a 2D INR trained on an inpainting task. Top row shows the original training image,
the training image with a section cropped out and the predictions of a trained MLP with width 256 and depth 6. The MLP, via implicit
regularization, learns a smooth surface in place of the discontinuity. Note how a lot of neurons are placed in the cropped region, and also
around the foreground boundaries, to allow more curvature while fitting.

9



E. Usage of SplineCam
We provide SplineCam as a python toolbox that can wrap
any given Pytorch [30] sequential network, containing a set
of supported modules.

To begin, first we have to define a 2D input space region of
interest (ROI). The region of interest is can be a polytopal
region at the input of the network defined via vertices. Since
all the region finding operations are performed in 2D, we
also require an orthogonal projection matrix that projects
vectors from the input space on to the 2D ROI. Follow-
ing this we can use the SplineCam library to wrap a given
model.

1

2 import torch
3 import splinecam
4

5 ## given torch model and domain (ROI) as a list
of vertices

6

7 T = splinecam.utils.get_proj_mat(domain)
8

9 model.cuda()
10 model.eval()
11 model.type(torch.float64)
12

13 print(’Wrapping model with SplineCam...’)
14 NN = splinecam.wrappers.model_wrapper(
15 model,
16 input_shape=model.input_shape,
17 T = T,
18 dtype = torch.float64,
19 device = ’cuda’
20 )
21

22 ## check .forward() and matmul operation
equivalence

23 print(’Verifying wrapped model...’)
24 flag = NN.verify()
25 print(’Model.forward and matmul equivalence check

’, flag)
26 assert flag
27

28 #

Listing 1. Wrapping a model with splinecam

SplineCam supports custom layers as well. Each
SplineCam layer requires a submodules to return the
weights, the intersection pattern and activation pattern of
the layer. We refer the reader to our codes for details. The
wrapped SplineCam model contains a verification method,
to ensure that the affine operations and the forward opera-
tions (which can be different from the affine operation based
on implementation, e.g., convolution) of the model result in
the same value for random inputs.

SplineCam can take any set of 2D domains as ROI, with cor-
responding projection matrices. This allows SplineCam to
be used to visualize the partition for piecewise linear sub-

spaces in the input space. The following example shows
how SplineCam computes the partition in a layerwise fash-
ion.

1

2 ## for a given list of polygons in 2D and
corresponding projection matrices

3

4 Abw = T
5 out_cyc = poly
6

7 for current_layer in range(1,len(NN.layers)):
8

9 ## given a set of 2D regions and a target
layer, find all new regions in 2D

10 out_cyc,out_idx = splinecam.graph.
to_next_layer_partition(

11 cycles = out_cyc,
12 Abw = Abw,
13 NN = NN,
14 current_layer = current_layer,
15 )
16

17 ## acquire region centroids
18 means = splinecam.utils.get_region_means(

out_cyc)
19

20 ## pass each region centroid to next layer
21 means = NN.layers[:current_layer].forward(

means)
22

23 ## get activation mask for each region
24 q = NN.layers[current_layer].

get_activation_pattern(means)
25

26 ## query network weights
27 Wb = NN.layers[current_layer].get_weights()
28

29 ## calculate affine parameters per region
30 Abw = splinecam.utils.get_Abw(
31 q = q,
32 Wb = Wb.to_dense(),
33 incoming_Abw = Abw)
34

35 #

Listing 2. Modular code for computing spline partition

One of the key algorithms in the
to next layer partition(.) function is the
search algorithm that allows us to find cycles from a given
graph. The following codeblock presents a pseudocode of
our heuristic breadth first search method.

1

2 from graph_tool import topology
3

4 def find_cycles(V=input_graph,start_edge=
input_edge):

5 ’’’
6 Given a undirected graph and a starting edge

find cycles from that edge
7 ’’’
8

9 ## Convert V to a bidirectional graph. This
allows us to control

10



10 ## the number of traversals for each edge
11 V = convert_to_bidirectional(V)
12 edge_q.append(start_edge)
13

14 ## if edge is a boundary edge
15 V.remove_edge(start_edge)
16

17 out_cycles = []
18

19 for e in edge_q:
20

21 remove_q = []
22 vertices = []
23 vertex_id = []
24

25 ## if no way out of v0 or no way in for
v1, continue

26 if not (V.get_in_degrees(e.vertex1)>1
27 ) and (
28 V.get_out_degrees(e.vertex0)>1):
29 continue
30

31 ## if the edge doesn’t exist, continue
32 if V.edge(e) is None and V.edge(e.vertex1

,e.vertex0) is None:
33 continue
34

35 ## add opposite path to removal queue
36 remove_q.append(V.edge(e.vertex1,
37 e.vertex0)))
38

39 ## bfs
40 vs,es = topology.shortest_path(V,
41 source=e.vertex0,
42 target=e.vertex1,
43 )
44

45 out_cycles.append([V.vertex_index[each]
for each in vs])

46

47 for new_e in es:
48

49 ## if boundary edge remove edges in
both directions

50 if V.ep[’layer’][new_e] == -1:
51 remove_q.append(new_e)
52 remove_q.append(V.edge(new_e.

vertex1,new_e.vertex0))
53

54 else:
55 ## remove only one direction and

append to queue
56 remove_q.append(new_e)
57 edge_q.append(new_e)
58

59 for each in remove_q:
60 V.remove_edge(each)
61

62 return out_cycles

Listing 3. Pseudocode function for finding cycles given a
undirected graph

11


	. Background on Continuous Piecewise Affine Deep Networks
	. Implementation Details
	. Computational Complexity
	. Extra Experiments
	. Evolution of partition statistics while training
	. Variation of region statistics between random orientations
	. Extra Figures

	. Usage of SplineCam

