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Figure 8. The overview of our distractor synthesis pipeline. The algorithm copies real distractors and objects from LVIS database to target
Rol with the help of Segmentation Network. The green box indicates the zoomed-in region before and after the synthesis pipeline. (Best

view in digital color image.)

1. Distractor Synthesis Pipeline

We present the algorithm of our dataset synthesis pro-
cedure in the Algorithm 2. The “DistractorSynl4k™ and
“DistractorSyn-Val” datasets are obtained as described in
the main paper. For each Region of Interest (Rol), which
refers to the segmentation stuff regions where we intent to
copy the distractors to, we sample a set of distractor objects
from our self-collected real distractor dataset, and also nor-
mal objects from LVIS database. We name them “distractor

samples”. The number of copies n for each sample is con-
strained by ensuring the total area of the pasted distractors
is not exceeding 10% of the Rol. We apply random spatial
and color augmentation including random flip, scale, rotate,
brightness and contrast adjustment to those distractor sam-
ples before copying and pasting them. Gaussian smooth-
ing is also applied while blending them with the image to
avoid sharp composition boundary artifacts. It will avoid
the model from overfitting the seams. The positions of the



Algorithm 2: Distractor Synthesis Pipeline
Data:
I: ITmage
D = {(p;, m;)}: Real sample distractor set
S = {(r4, s;) }: Rol segmentations
r;: Rol mask
s; :Rol label
P = {(p;, mi, c;)}: LVIS sample small-object set
p;: Sample image
m;: Sample mask
¢;: Sample Rol label
Result: Iy, Dgyp
Dsyn <~ D;
Isyn — I;
for r;,s; in S do
D’ « distractors inside 7;;
ri <71 \ {m;lm; € D'};
if |D’| < 3 then
P’ + random from P s.t. ¢; = s;;
D'+ D'UP;
D’ «+ total area of distractors in D’ ;
n + [10% x area(r})/D'] ;
for d in D’ do
p;  image crop in d (real or LVIS);
m; < mask crop in d (real or LVIS);
for kin 1.n do
d; < distance map of r;;
x,1y < center coordinate in d;;
p;, m; <—augment p;, m; ;

Move p’;, m; to (x,y);
I, « blend p; to Isy,;
if Hhist(I;yn(CL‘, y)) —
hist(Isyn(x,y))|| > 0.001 then
Lsyn < Iyns

Dgyn <= Dsyn U {(pgvm;)}?
i Ty \m;-;

end
end

end

distractor placement can be decided by the distance map
peak value, and the details are shown in the Algorithm 2.
Fig. 8§ illustrates the entire process and intermediate re-
sults of our data synthesis pipeline. We tend to make the
synthesized images look realistic, though the compositional
artifacts still exist. The resulting images still look natural
enough since the distractor samples are from real distractor
datasets and real small objects. According to our experi-
ments, using synthetic data will not greatly influence the
generalization ability of the model to real images. More im-
age harmonization and deep composition techniques can be

further explored in the future work. Some other results are
shown in Fig. 9. Our synthetic images are comparable with
real distractor ones which can be used to train and evaluate
the CPN module. Our images contains many repeated dis-
tractors with diversity in appearances and categories, simu-
lating the properties of distractors in the real-world.

2. More details about the Distractor20K
dataset

Our dataset Distractor20K is collected to have 107 differ-
ent categories belonging to 28 super categories. There exist
known and unknown categories that label unrecognizable
regions or not in the defined category set. Both stuff and
things are considered distractors in our dataset; in detail,
there are 79 object categories and 28 non-object categories.
If we follow the LVIS dataset to split the categories based
on their frequencies, there are 13 rare, 25 common, and 69
frequent categories in our collected dataset. The number
of instances and images for each category can be seen in
Fig. 10. Rare categories appear in a maximum of ten im-
ages in the entire dataset, while common categories have
less than 100 images. All the category names are hidden for
commercial use.

The Fig. 11 illustrates the histogram of a number of dis-
tractor categories for each image. An image can have up to
25 categories of 15 super categories, and the average con-
tains 3-5 categories.

Figure 12 shows the histogram of the ratio of the instance
mask size over the image size in our Distractor20K. Ac-
cording to the statistics, we found that a significant amount
of distracting instances are medium and small, as tiny as
only occupying 0.01 of the image. Those distractors can
be stones on the ground, graffiti on the wall, leaves on the
water’s surface, fire valves on the ceiling, etc. Photogra-
phers have the requests to clean those things from the pho-
tos, while existing segmentation models do not help seg-
ment them automatically.

3. More Results of 1C-DSN
3.1. Existence of Negative Clicks

Additional experiments are executed with FocalClick
and RiTM on the LVIS dataset. To validate the capability
of those models with the one-click procedure, we finetuned
the models on LVIS dataset with only one positive click as
input. In testing, the click generator is customized to pro-
duce positive clicks only. No additional clicks are added
when there are only a few false negatives at the boundary
because clicking at the boundary can cause severe accuracy
degrading due to the precision of click positions.

The Fig. 13 shows the performance of Interactive Seg-
mentation models in two different clicking strategies. The
public weights are used in the positive-negative strategy,
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(Top to Bottom: Origin image, Synthesized image, Zoomed Patches)
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Figure 9. Examples of synthesized and real distractors. Similar to real photos, our synthesized database contains distractors with different

appearances and categories. (Best view in digital color image.)
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Figure 10. Frequencies of categories in the Distractor20K

while our finetuned models are tested with positive clicks
only. All frameworks using the positive-click strategy, in-
cluding ours, do not receive large improvements without
negative clicks to refine the boundary. In contrast, the
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Figure 11. The number of categories in each image in the Distrac-
tor20K
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Figure 12. The number of instances regards to the object size in
our distractor datasets.



performance of RiTM and FocalClick using the positive-
negative strategy increases by adding more negative clicks.
It demonstrates the existence of negative clicks indeed helps
to improve the overall masking performance with multiple
clicks from the users.

Howeyver, for both RiTM and FocalClick, the existence
of negative clicks also does harm to the performance when
there is only one single positive click. As shown in Fig. 13,
in the first positive click, the new finetuned models achieve
higher results than the ones using negative clicks in train-
ing. As we mentioned in the main paper, distractors are
mostly medium and small objects, and users prefer to use
fewer clicks for them. Therefore, the positive-click strategy
is more suitable for distractor removal and photo-cleaning
applications. Following this core idea and under fair com-
parison, our framework achieves reasonable performance
with one positive click than the other two interactive seg-
mentation models.

Some qualitative results of different click samplers on
LVIS val set are shown in Fig. 14. The backbone used is
MiT-B3. Other models with more negative clicks help to
improve the detailed segmentation boundary and achieve
overall better results. However, our model obtains bet-
ter masking quality than one-positive-click finetuned Fo-
calClick and RiTM, and requires less user effort to select.
The one-click system also helps with group selection sce-
narios later in the pipeline.

3.2. Randomness of Clicks

To evaluate the robustness of models with different click
positions, we increase the randomness of clicks surround-
ing the object’s center. Let d,,,, be the peak value in
the distance map A, which localizes in the center of the
object. The randomness level r defines a threshold such
that the clicks are placed among all positions with d; >
(1.0 = 7) X dyaz- When clicks are always at the object

Click IDS PVM AP (%) AR (%)
Embedding
28.9 39.2
v 29.9 39.0
v 23.0 422
v v 26.7 42.0
v 34.1 41.0
v v 33.7 39.0
v v 344 47.0
v v v 424 49.7

Table 6. Performance of EntitySeg (SwinL) and 1C-DSN (SwinL)
on DistractorSyn-Val set. The click embedding helps producing
better exemplar masks then improve the performance in finding
similar distractors.
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Figure 13. Performance of Interactive Segmentation with different
click procedures. Without negative clicks, the current Interactive
Segmentation models cannot achieve higher performance when in-
creasing the number of clicks. Our models outperform the model
with only one positive click, which better suits the distractor se-
lection task.

center, the randomness 7 is zero. Otherwise, when the click
can be anywhere in the mask, the randomness » = 1.0. The
Fig. 15 presents the decrease in performance when increas-
ing the randomness of click positions. All models are fine-
tuned on LVIS dataset with one positive click procedure.
With small objects, the randomness level does not affect
the IoU significantly. However, the performance goes down
quickly with medium objects when increasing the random-
ness from 50% to 80%. Our performance still remains high
with a large randomness level, indicating the model’s ro-
bustness to click randomness.

3.3. Similarity Findings without Click Embedding

We show in Table 6 the performance of EntitySeg [10]
model in similarity finding and group selection. This exper-
iment aims to ensure that our one-click-based segmentation
model is necessary for the group selection scheme.

We simply apply our CPN and PVM modules to an En-
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Figure 14. Qualitative results of different click samplers and frameworks on LVIS val set. With only one positive click, our model 1C-DSN
can select perfect masks of objects while other frameworks require negative clicks. Except for RiTM using HRNet32, other frameworks

use MiT-B3 as backbones. (Green: positive click, Blue: negative click. Best view in digital color)
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Figure 15. The performance of one-positive-click models drops
when increasing the randomness of click locations.

titySeg model (without click embedding inputs) finetuned
on Distractor20K dataset. We use the model predictions on
one image to extract exemplar masks for the CPN and PVM
modules. For the clicks which do not have corresponding
masks, no further steps are executed and then the prediction
output will be empty. Without running IDS or PVM, the En-
titySeg model provides lower recall and precision than our
models. The Fig. 16 gives typical failure cases of EntitySeg
models. Masks can be over-segmented or wrongly detected
by EntitySeg without click inputs. Therefore, adding either
IDS or PVM steps does not improve the final results for En-
titySeg baseline model.

4. Compare CPN with Other Self-similarity
Methods

Related Works. Self-similarity is a commonly used tech-
nique in vision tasks to find repeating patterns and learn bet-

Figure 16. Typical failure cases of EntitySeg (left) without click
embedding on DistractorSyn-Val set. EntitySeg baseline may
over-predict or under-predict the masks making the self-similarity
mining not reliable enough. Our framework (right) still has good
predicted mask. Both models using Swin-Large backbone and are
trained on Distractor20K. (Best view in color)

ter globally consistent features. It has been used in various
models, including non-local network [22], contextual at-
tention [24], self-attention [15, 19], and transformer-related
models [3,6,21,23]. Attention has also shown to benefit
almost all vision models, including image super-resolution
[7], object detection [20, 26], and image synthesis [2, 4, 5],
among others [8,9, 13, 14, 18]. The most similar work re-
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Figure 17. Our framework produces cleaner heatmaps than other naive self-similarity methods. Red eclipses indicate the false or missed
detection regions. Images are from DistractorSyn-Val dataset. (Best view in color)

lated to our task is visual counting [1, 11, 12,16, 17], which
aims to localize all similar objects within the same images
by actively sampling a few of them. However, visual count-
ing works do not require masking the objects, and the tar-

gets of visual counting are usually the main subjects of the
photos. In our task, we may face more complicated and
challenging image contexts, where diverse context yields a
high false positive detection rate. To address this issue, we
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Figure 18. Precision-Recall of heatmaps predicted by different
similarity finding approaches on DistractorSyn-Val. Our models
has higher precision than other methods.

leverage a transformer decoder to learn cross-scale attention
and generate the attention heatmap, along with an additional
verification scheme to remove false positives.

Point Detection Precision and Recall. To evaluate the
performance of the CPN module in similarity heatmap gen-
eration, we use Area Under the Curve of Precision-Recall
(AUC-PR) on the similarity heatmap. The metric is used
in Table 4. A click located at the ground-truth mask region
is counted as a true positive; otherwise, it is counted as a
false positive. The precision is the proportion of true pos-
itive clicks and the total predicted clicks. The recall is the
ratio between the number of masks having predicted clicks
over the total of masks. We compute precision and recall in
different thresholds to get the curve between them.

Pixel-wise Dot Product Similarity. Since there are no
previous works on distractor similarity findings and it is not
fair enough to directly compare with visual counting works,
we can only compare our CPN with some naive baselines.
With the finer feature map X; € R"***4 and the mask M,
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Figure 19. The increasing number of iterations improves the Aver-
age Recall while maintaining the Average Precision. The compu-
tational cost is also increased. The performance is saturated after
about five iterations.
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Figure 20. The performance of IDS increases proportionally with
the number of exemplars and the computational cost.

we compute the query vector ¢ € R? by Masked Global Av-
erage Pooling [25]. The dot product similarity is then com-
puted between X and ¢ to get the heatmap H € R"*v,

Pyramid Patch Matching. We firstly build the 3-level
pyramid features of X, with the scales }, §, and 15 of the
original image. With the query mask, the query patch fea-
ture ¢ € R3*3*4 ig extracted by Rol-Align. By sliding the
query patch feature on the feature pyramid, we can compute
the similarity at each location to the query patch with Sum
Squared Distance (SSD). The final heatmap is the average
of responses of all pyramid levels.

Comparing with our CPN. Fig. 17 shows the differ-
ences in heatmaps produced by different methods. Pixel-
wise similarity can cause many false positives, while the
patch pyramid approach is not robust to objects with vari-
ant appearances. Our proposed method generates cleaner
heatmaps with high precision. The precision-recall curve
of three methods on DistractorSyn-Val is shown in Fig. 18.
Our method outperforms other baselines with the balance
between precision and recall rate.

5. Hyper-parameters of IDS

The following sections evaluate the performance of
our proposed IDS with different hyper-parameters on
DistractorSyn-Val. All experiments are with the SwinL
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Figure 21. Accepting more clicks in each iteration improves the
performance and the speed. However, memory usage also grows
as a result.



Figure 22. Our model also performs well with large objects.

Figure 23. The robustness of our model when clicking on different objects.

backbone and trained on DistractorSyn14K. The pretrained
weights on DistractorReal20K are used for feature extrac-
tion and mask generation modules. If not explicitly stated,
all experiments have default hyper-parameters: the number
of iterations N = 5, the number of exemplars m = 3, and
the number of accepted clicks for each iteration k£ = 10. To
make the comparison consistent, the PVM does not validate
the outputs at each iteration.

Besides the Average Precision (AP) and Average Recall
(AR), we also compute the time and GPU memory com-
plexity of different hyper-parameters. While the time is
measured before starting IDS until the last iteration, the
GPU memory is the additional cost raised by the IDS, not
by the whole network. The memory amount is computed
with PyTorch API.

5.1. Number of Iterations

The Fig. 19 illustrates the performance of IDS with dif-
ferent numbers of iterations N. When N = 1, all proposal
clicks are accepted, which are equivalent to the non-IDS
experiment. Other experiments use the default value of
k = 10 by default. There is a trade-off between compu-
tational cost and the performance of the framework when
increasing the number of iterations. The AR increases pro-
portionally to N until the fifth iteration. Because almost
all clicks have been accepted after five iterations, contin-
uously running the CPN after that only yields incremental

improvements.

5.2. Number of Accepted Clicks

The results of different accepted clicks for each itera-
tion are shown in Fig. 21. The performance and speed of
the entire IDS process increase When accepting more clicks
for each round. However, it also consumes more memory
for mask generation. In practice, depending on the occur-
rence of distractors in the image, we can balance between
the number of accepted clicks and the number of iterations
to achieve the best results.

5.3. Number of Exemplars

We change the number of exemplars used for querying
similar objects in each iteration of IDS process. The results
are shown in Fig. 20. An increasing in the number of exem-
plars significantly rises the time and memory complexity.
Additionally, the AP and AR are also improved with more
exemplars.

6. Additional Qualitative Results

Our framework not only works with tiny distractors but
also yield good results on large objects. Fig. 22 shows some
examples where the selecting objects are larger than 10%
of the image. Besides, Fig. 23 illustrates the robustness of
our model in which the results are consistent while different
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Figure 24. Some intermediate results without IDS process. Our CPN successfully finds similar objects with a high recall rate, and PVM
correctly removes false positives to clean. (Best view in color and zoom-in)
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Figure 25. The progress of cleaning photos with IDS. For each iteration, some new similar distractors are detected, and the photos become
cleaner than in the previous step. In the end, all distractors are removed from the image. (Best view in color and zoom-in)

objects are clicked.

Some additional results on real photos are shown in the
Fig. 24 and Fig. 25. In some simple cases where there are
not many repeated distractors, the CPN and PVM frame-
works can work perfectly without IDS process. The CPN
tries to achieve a high recall rate, and then the PVM helps
increase precision by removing outliers.

The Fig. 25 shows some extreme cases where many sim-
ilar distractors appeared, and the IDS joins in selecting all
similar distractors with only one click. The photos get
cleaner after each iteration because more distractors are se-
lected and removed.
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