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We provide additional details and analyses of the pro-
posed method in this supplementary material. Section A
provides model details. Section B provides detailed settings
and data preprocessing for experiments. Section C provides
evaluation results with detailed analyses. Section D pro-
vides implementation details and detailed results for the ab-
lation study.

A. Model Details
A.1. Algorithm Details

Algorithm 1 summarizes the overall hierarchical explo-
ration process. The mode selector supervises the process
and chooses whether the agent should explore or exploit at
each time step.

A.2. Exploitation Module

A.2.1 Reference SOS Features.

In the proposed method, we approximate the reference SOS
feature of an object token by using prior information about
objects in the training data. For instance, for the ‘chair’
object, we collected the widths and heights of the detected
bounding boxes as shown in Figure 1. Figure 2 shows two
representative values: median and mean for each distribu-
tion. We choose the median values, which minimizes the L1
error, to represent the reference bounding box of each ob-
ject. To generate rotation-invariant SOS features, we con-
vert the four vertices of the bounding box detected from
the front view image of size 640 × 480 to the vertices of
a bounding box detected from the panoramic view image
of size 2048 × 512 using coordinate transformations. To
simplify the implementation, we assume that the converted
bounding box has a rectangle shape with the vertices trans-
formed into coordinates in a panoramic view. The refer-
ence SOS feature is calculated as the logarithmic magni-
tude of the Fourier transform of the panoramic mask with
mean pooling on the vertical spectral axis. Considering that
the shift in the spatial-domain only affects the phase of the

Fourier transform, the location of a reference bounding box
does not matter.

Algorithm 1: Meta-Explore

Pexplore ← 1
Success← False
Initialize Gt and node features
while t < T do

Update Gt

Update node features
Ht ← cross-modal embedding at time t
if Pexplore ≥ 0.5 then

at ← argmaxVi(Fexplore([Ht]i))
p̂t ← Fprogress(Ht)
t← t+ 1

else
Vlocal ← unvisited but observed nodes in Gt

vlocal ← argmaxv′∈Vlocal
(Snav(τ

′(v0, v
′)))

τ ← PathP lanning(vt, vlocal)
while not arrived at vlocal do

at ← pop(τ)
t← t+ 1

end
end
Pexplore ← 1− Smode(Ht)
if at is stop and d(vt, vgoal) < dsuccess then
Success← True

end

A.2.2 Navigation Score

To compare local goal candidates, we design a navigation
score of a corrected trajectory τ ′ as equation 1. This metric
can also be interpreted as a weighted correlation coefficient
among SOS features and object tokens weighted by the sim-
ilarities between them.



Dataset Instruction Object Tokens Target Object

R2R “Walk through the kitchen. Go past the sink and stove stand in front of [“kitchen”, “sink”, “stove”, “stand”, “dish”, “table”, “chair”] “chair”
the dining table on the bench side.”

SOON “This is a brand new white, rectangular wooden table, which is above a [“book”, “chair”, “pitcher”, “flower”, “table”, “table”] “table”
few chairs, under a pot of flowers. It is in a very neat study with many books.”

REVERIE “Go to the bedroom with the fireplace and bring me the lowest hanging [“bedroom”, “fireplace”, “bed”, “table”, “stand”, “art”] “art”
small picture on the right wall across from the bedside table with the lamp on it”

Table 1. Object Parsing Examples. For each dataset, object tokens are extracted from the instructions. Target objects are inferred from
the instructions using VQA. Words that have similar meanings are unified into a single object word for categorization.

Viewindex 13 Viewindex 15 Viewindex 16Viewindex 14

Front View Object Detection

Panoramic View Object Detection

Figure 1. Bounding box coordinate transformation. Front-view
visual observations from different angles at the same location.
Each bounding box shows the ‘chair’ detection. We use coordi-
nate transformation to convert coordinates into panoramic view.

(a) width (b) height (c) size

Figure 2. Bounding box statistics. We collect width, height, and
size of detected bounding boxes. The histograms show statistics
for ‘chair’ objects. Yellow line and red line show the median and
average values of each distribution, respectively.
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Figure 3 shows the relationship between the naviga-
tion score and an evaluation metric in the R2R naviga-
tion task. Both metrics measure how similar the cur-
rent trajectory is to the ground truth trajectory. We
generate 49,986 augmented trajectories with an average
length of 8.23m based on 5596 ground truth trajecto-
ries. To generate various samples, we separate each aug-
mented trajectory (v1, v2, ..., vt) into t augmented trajecto-
ries (v1), (v1, v2), ..., and (v1, v2, ..., vt). The final 421,383
augmented trajectories include trajectories with 1 to 15

nDS
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Figure 3. Relationship between navigation score (Snav) and
normalized distance sum (nDS) in R2R. We measure navigation
scores for augmented trajectories which include both successful
and failed trajectories. R and Q illustrate an example case of a
ground truth trajectory and a query trajectory. Maximum hop of a
query trajectory is 15. Trajectories with high nDS scores also have
high navigation scores.

nodes and include both successful and unsuccessful trajec-
tories. We classify the trajectories with the normalized dis-
tance sum (nDS) between ground truth trajectory R and a
query trajectory Q as follows:

nDS(R,Q) = exp

(
−
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uj∈Q
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)
,
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which requires the ground truth information of R. d(u, v)
denotes the geodesic distance between two nodes, u and v,
and dsuccess denotes the success distance. The plot in Fig-
ure 3 shows a linear relationship between the nDS and the
navigation score. The results imply that the proposed nav-
igation score effectively scores the augmented trajectories
even though it only relies on the given target instruction and
observation from the augmented paths, without any location
information about the nodes on the ground truth trajectory.

A.3. Implementation Details

We use ViT-B/16 [1] pretrained on ImageNet to extract
features from the viewpoint panoramic images. We use pre-
trained LXMERT [2] for the language encoder and cross-
modal transformer. We implement the mode selector as a
two-layer feed-forward network.



B. Experiment Setup
B.1. Dataset Statistics

R2R. The average length of instructions is 32 words. The
average path length of the ground truth trajectory of each
instruction is six steps. The number of train, val seen, val
unseen, and test episodes are 14,025, 1020, 2349, and 4173.
SOON. The average path length of the ground truth trajec-
tory of each instruction is four to seven steps. The number of
train, validation seen instruction, validation seen house, val-
idation unseen house episodes are 3085, 245, 195, and 205.
REVERIE. The average path length of the ground truth tra-
jectory of each instruction is 9.5 steps. The number of train,
val seen, val unseen, and test episodes are 10,466, 1423,
3521, and 6292.

B.2. Data Preprocessing

To calculate reference SOS features, we preprocess ob-
ject tokens from language instructions. Using a pretrained
visual question answering (VQA) model [3] with the ques-
tion ”What is the target object? Answer in one word.”,
we extract target objects from the instructions in R2R and
REVERIE datasets. For SOON dataset, the target object
names are already given. After extracting target objects, we
perform object parsing for the instructions as shown in Ta-
ble 1. The final object tokens are sorted by order of ap-
pearance in the instructions for R2R and REVERIE. For
SOON, considering that the full instruction is divided into
5 parts: object name, object attribute, object relationship,
target area, and neighbor areas, we sort the object tokens by
reversed order of sentences.

B.3. Baselines

Seq2Seq [4] uses sequence-to-sequence action prediciton
to generate actions from the agent trajectory. Speaker-
Follower [5] uses the speaker model to augment natural
language instructions and evaluate the candidate action se-
quence. FAST [6] uses both local and global signals to look
forward the unobserved environment during exploration
and backtrack to the originally visited nodes when needed.
SMNA [7] uses visual-textual co-grounding module that
encodes the past instructions and the instructions and
actions to be done. SMNA also uses a progress monitor
to estimate the current progress of the agent relative to the
total instructions. Regretful-Agent [8] improves SMNA
via two modules. The regret module decides whether
to continue to explore or rollback to previous state by a
learned policy, and the progress marker decides the direc-
tion the agent should head to by selecting visited nodes
with progress estimates. RCM [9] applies reinforcement
learning to enforce the global matching between the agent
trajectory and the given natural language instruction. Via
cycle-reconstruction reward, RCM allows the agent to

comprehend the natural language instruction and penal-
ize paths that do not match with the given instructions.
FAST-MATTN [10] introduces a Navigator-Pointer model
to both navigate to the target point and to localize the
object from the navigation point according to the language
guidance. AuxRN [11] introduces four auxiliary tasks that
help learning the navigation policy: a trajectory retelling
task, a progress estimation task, an angle prediction task,
and cross-modal matching task, and improves navigation
success by aligning representations in these unseen do-
mains with seen domain. HAMT [12] uses transformer
instead of a recurrent unit to predict actions from a long-
range trajectory of observations and actions. Airbert [13]
uses ViLBert [14] to measure the correlation between
the language instructions and the viewpoint trajectories.
VLN⟳BERT [15] adds a recurrent unit in the transformer
to predict the action from the trajectory. SIA [16] first
pretrains the agent to learn the cross-modality between
object grounding task and scene grounding task, and then
generates real action sequences with memory-based atten-
tion. SSM [17] integrates information during exploration
and constructs a scene memory and chooses the most
probable node among visited nodes during backtracking.
GBE [18] models the navigation state as a graph and
explores the environment based on the navigation graph.
DUET [19] uses two models, a local encoder and a global
map planner, to fuse the local observations and coarse scale
encoding for planning actions.

C. Navigation Experiments
In this section, we analyze the evaluation results of nav-

igation experiments with different evaluation metrics. The
results are provided in the paper.

C.1. Detailed Analyses in R2R

Navigation Error (NE). Navigation error (NE) is measured
as the average distance between the final location of the
agent and the target location of episode in meters. Because
each episode is recorded as success if NE is less than 3m,
NE is strongly related with the success rate. Meta-Explore
shows the lowest NE in the val seen and test unseen splits of
the R2R navigation task. The results imply that hierarchical
exploration with local goal search helps the agent arrive to
the target location closer than other baselines.
Trajectory Length (TL). Among all the R2R naviga-
tion baselines, Seq2Seq shows the lowest TL. However,
Seq2Seq shows low success rate and low SPL in all data
splits. Compared to navigation baselines with SPL higher
than 50% in the test split, VLN⟳BERT, SMNA, and
HAMT-e2e show lower TL than Meta-Explore. However,
all three of these methods show a lower success rate, SPL,
and NE than Meta-Explore. According to R2R [4], train
episodes show a wide range of average trajectory length



Methods Memory Exploit Val Seen Val Unseen Test Unseen
SR↑ SPL↑ OSR↑ TL↓ SR↑ SPL↑ FSR↑ FSPL↑ OSR↑ TL↓ SR↑ SPL↑ OSR↑ TL↓

Human - - - - - - - - - - - - 81.51 53.66 86.83 21.18
Seq2Seq [4] Rec ✗ 29.59 24.01 35.70 12.88 4.20 2.84 2.16 1.63 8.07 11.07 6.88 3.99 10.89 3.09

VLN⟳BERT [15] Rec ✗ 51.79 47.96 53.90 13.44 30.67 24.90 18.77 15.27 35.02 16.78 29.61 23.99 32.91 15.86
RCM [9] Rec ✗ 23.33 21.82 29.44 10.70 9.29 6.97 4.89 3.89 14.23 11.98 7.84 6.67 11.68 10.60

SMNA [7] Rec homing 41.25 39.61 43.29 7.54 8.15 6.44 4.54 3.61 11.28 9.07 5.80 4.53 8.39 9.23
FAST-MATTN [10] Rec. ✗ 50.53 45.50 55.17 16.35 14.40 7.19 7.84 4.67 28.20 45.28 19.88 11.61 30.63 39.05

HAMT [12] Seq ✗ 43.29 40.19 47.65 12.79 32.95 30.20 18.92 17.28 36.84 14.08 30.40 26.67 33.41 13.62
SIA [16] Seq. ✗ 61.91 57.08 65.85 13.61 31.53 16.28 22.41 11.56 44.67 41.53 30.80 14.85 44.56 48.61

Airbert [13] Seq. ✗ 47.01 42.34 48.98 15.16 27.89 21.88 18.23 14.18 34.51 18.71 30.28 23.61 34.20 17.91
DUET [19] Top. Map ✗ 71.75 63.94 73.86 13.86 46.98 33.73 32.15 23.03 51.07 22.11 52.51 36.06 56.91 21.30

Meta-Explore (Ours) Top. Map local goal 71.68 63.90 73.79 13.84 47.49 34.03 32.32 23.30 51.21 22.12 - - - -
Meta-Explore∗ (Ours) Top. Map local goal 71.89 65.71 73.44 13.03 47.66 40.27 32.15 27.21 50.55 18.48 51.18 44.04 53.8 10.23

Table 2. Comparison and evaluation results of the baselines and our model in REVERIE Navigation Task.
Gray shaded rows describe hierarchical navigation baselines. Three memory types: Rec(recurrent), Seq(sequential), and Top. Map(topological map)

from 5m to 25m, while the test episodes have an average
trajectory length of 9.93m. This implies that the agent is
trained with longer trajectories than the test split trajecto-
ries, thereby the navigation policy might have learned to
navigate longer paths better than shorter paths.

C.2. Detailed Analyses in SOON

Oracle Success Rate (OSR). In the SOON navigation task,
Meta-Explore achieves the highest OSR in the test split
while it does not improve the OSR in the val seen instruc-
tion and val seen house splits. The proposed method shows
a significant generalization result compared to the baselines.
AuxRN shows the highest OSR in both the val seen instruc-
tion split and the val seen house split as 78.5% and 97.8%,
respectively, but shows the OSR in the test unseen split
as 11.0%. On the other hand, Meta-Explore shows OSR
as 96.0%, 52.7%, and 48.7% in the val seen instruction,
val seen house, and test unseen splits, respectively. Meta-
Explore outperforms AuxRN on OSR by 442.7% in the test
split.
Object Grounding Performance (FSPL). Following [18],
we measure the object grounding performance with the tar-
get finding success weighted by path length (FSPL). Al-
though Meta-Explore show the highest success rate and
SPL in the val seen instruction and test splits, it does not
improve FSPL over baseline methods. We expect to achieve
better performance on FSPL if the agent uses the SOS fea-
tures as deterministic clues to find the target object at the
end of each episode.

C.3. Evaluation Results in REVERIE benchmark

Table 2 compares Meta-Explore with the baselines in
the REVERIE navigation task. While the proposed method
does not improve performance in the val seen split, Meta-
Explore outperforms other baselines in the val unseen on
success rate, SPL, FSR, FSPL, and OSR. However, the im-
provement of performance is lower than the improvements
shown in R2R and SOON benchmarks. We found 252

meaningless object categories (e.g., verbs, adjectives, and
prepositions) and 418 replaceable object categories (e.g., ty-
pographical errors and synonyms) in the REVERIE dataset.
10.7% and 41.2% of a total of 46,476 words in the bound-
ing box dataset correspond to meaningless and replaceable
object categories, respectively. Because our exploitation
method utilizes object-based parsing of the given instruc-
tion to match with the detected object categories, the effec-
tiveness of the proposed method is lessened due to inaccu-
racies and inconsistencies in the dataset. We expect to have
higher performance if the mistakes in the dataset are fully
fixed. To provide evidence for this hypothesis, we evalu-
ate Meta-Explore with a modified dataset, which is partially
fixed. Typographical errors are fixed and words that have
similar meanings are unified into a single object category.
For instance, ‘blackboard’, ‘whiteboard’, and ‘bulletin’ are
all unified into ‘board’. The results are shown as the per-
formance of Meta-Explore∗ in Table 2. The results imply
that the proposed method can effectively enhance the SPL
by classifying the detected objects correctly, using the mod-
ified dataset.

Comparison between exploitation policies in the
REVERIE navigation task is shown in Table 3. Among the
four exploitation methods: random, spatial, spectral local
goal search and homing, spectral-domain local goal search
shows the highest performance. The results in Table 3 are
consistent with the results in R2R and SOON.

Local Val Seen Val Unseen
Goal SR↑ SPL↑ FSR↑ OSR↑ TL↓ SR↑ SPL↑ FSR↑ OSR↑ TL↓

Oracle 79.20 64.17 62.83 84.05 18.53 59.07 38.23 40.36 66.86 26.71
Random 0.21 0.04 0.00 20.31 46.02 1.11 0.18 0.34 26.70 0.05
Homing 68.45 50.54 55.24 73.23 17.95 43.60 28.25 29.59 49.28 25.64
Spatial 67.53 40.21 54.25 70.91 26.92 40.90 23.25 27.61 45.84 26.92
Spectral 71.68 63.90 57.34 73.79 13.84 47.49 34.03 32.32 51.21 22.12

Table 3. Comparison of Exploitation Policies. (REVERIE)
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Figure 5. Sample image captions. (a), (b), (c), and (d) show cap-
tions that successfully describe the scenes. (e) and (f) shows fail-
ure cases of caption generation. For successful language-triggered
hierchical exploration, image captions should correctly describe
the scenes. However, current image captioning methods often gen-
erates misdescribed captions, thereby leading to a low navigation
performance.

C.4. Local Goal Search

In this section, we provide sample local goal search sce-
narios. Figure 4 shows two scenarios of choosing the local
goal when the agent moves to a wrong direction. The agent
is given an instruction “Turn right and turn right again af-
ter the desk on the right. Wait next to the cabinets and
microwave.”. In both scenarios, we assume that the agent
chooses the local goal as the node with the highest naviga-
tion score among the possible candidates. If the local goal
is chosen from the previously visited nodes, the agent has to

move back toward the explored regions. In contrast, if the
local goal is chosen from unvisited but observered nodes,
the agent can choose a local goal which is close to the global
goal. The two scenarios imply that the local goal search in
Meta-Explore is more effective than exploitation methods
that return the agent to a previously visited node.

D. Ablation Study
D.1. Language-triggered Hierarchical Exploration

In the proposed method, the target instruction and lo-
cal goal candidates are compared in spectral-domain using
SOS features. Since semantic information can also be ex-
pressed in language-domain, we further experiment with
the local goal search method using synthesized language
captions from visual observations in the R2R navigation
task. We compare three types of representation domains:
spatial, spectral, and language, which are implemented as
panoramic RGB image embeddings, SOS features, and sen-
tence embeddings, respectively. To compare features in dif-
ferent domains, we transfer the source domain to another
using augmentation or cross-domain similarity.

D.1.1 Implementation Details

We address that the agent can use image captioning to ex-
tract contextual information from visual observations such
as room type, color, and object placements. To compare
local goal candidates and target instruction in language do-



Domains Val Seen Val Unseen
Nav. Target Local Goal SR SPL SR SPL

Lang. ✗ 79.92 72.79 70.63 59.81
Lang. Spatial 78.84 71.96 71.05 58.86
Lang. Lang. Aug. 77.96 70.77 69.52 57.26

Spectral Aug. Spectral 80.61 75.15 71.78 61.68

Table 4. Comparison and evaluation results of the local goal search
methods using different target and candidate domains. (R2R)

main, we use pretrained ViT [1] and GPT-2 [20] to gener-
ate the caption for each viewpoint as Figure 5. The Fig-
ure shows four successful cases and two failure cases of
image captions. To find a local goal using the generated
captions, we calculated the similarities between the cap-
tions corresponding to local goal candidates and the tar-
get instruction using a fine-tuned sentence transformer ‘all-
MiniLM-L6-v2’ [21]. The local goal is chosen as the can-
didate with the highest similarity. Additionally, we use pre-
trained CLIP [22] to evaluate local goal search based on
cross-modal similarities between the visual observations of
local goal candidates and the target instruction.

D.1.2 Experiment Results

Table 4 shows the evaluation results of the local goal search
methods using different target and candidate domains in
R2R navigation task. Nav. Target denotes the target of
VLN, initially given as language. Lang. Aug. denotes lan-
guage captions generated from images. Spectral Aug. de-
notes reference SOS features generated from language in-
structions. Among the three representation domains, the
spectral-domain features enhance navigation performance
the most. This implies that hierarchical exploration is most
effective when used with spectral visual features. Table 1
and Table 2 in the paper also show the improvement of nav-
igation performance by using both hierarchical exploration
and spectral visual features over DUET [23], which uses
the same ViT-B/16 to extract spatial visual features, result-
ing in 17.1% increase in SR and 20.6% increase in SPL in
the SOON test unseen split.

D.2. Image-Goal Navigation in Continuous Domain

To implicate further applications of Meta-Explore in
a continuous domain, we evaluate our method on the
photo-realistic Habitat [24] simulator with continuous ac-
tion space with realistic noises to solve an image-goal nav-
igation task. The objective is to arrive at the target lo-
cation of the given goal image in an unseen environment.
We mainly focus on the effectiveness of hierarchical explo-
ration using local goal search in this experiment. The results
are shown in Table 5.

D.2.1 Exploration-Exploitation Selection

We extend Meta-Explore to continuous environments to ad-
dress the impact of hierarchical exploration in realistic envi-
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Figure 6. Exploitation by searching a local goal. In the exploit
mode, the agent aims to escape from the stranded local area. It first
searches for the most similar node to the goal. Then, it finds an
optimal local goal which is unexplored and also similar to the goal
image. We use SOS features to compare with the target image.

ronments. The mode selector decides when to explore and
exploit. In the exploration mode, the agent explores around
a local area until the meta-controller decides to stop the ex-
ploration. The exploration module consists of graph con-
struction module and navigation module. We use recurrent
action policy that takes the current and target image features
and outputs low-level actions for exploration. We illustrate
that the explore-exploit switching decision occurs in stuck
scenarios, such as entering a small place or getting stranded
in a corner. Figure 6 shows the overview of exploitation in
image-goal navigation by searching a local goal. When the
control mode is changed to exploitation mode, the agent re-
turns to the closest previously visited node. Then, the agent
finds a local goal among the nodes in the constructed topo-
logical map and moves toward the local goal using dijkstra’s
algorithm [25]. The local goal is chosen as the node which
has the most similar SOS feature with the SOS feature of the
target image based on cosine similarity. The agent repeats
this explore-exploit behavior until it finds the goal. This
explore-exploit switching decision increases the navigation
success rate.

D.2.2 Experiment Details

We evaluate Meta-Explore in the Gibson dataset [30] with
Habitat [24] simulator to solve an image-goal navigation
task. Habitat simulator allows the agent to navigate in
photo-realistic indoor environments. The exploration policy
of the agent is trained using 72 scenes. We evaluate Meta-
Explore using 14 unseen scenes. We use panoramic RGBD
observations and construct image-based graph memory. To
construct a context frequency vector, we detect objects via
Mask2Former [31] pretrained in ADE-20K dataset [32],
to effectively detect the objects that are generally lo-
cated in indoor scenes. We use a discrete action space,
{stop, move forward, turn left, turn right} for
navigation. With move forward action, an agent moves
forward by 0.25 m, while turn left and turn right

denotes a 10◦ rotation, counter-clockwise and clockwise,



Methods Exploit Need Domain Easy Medium Hard Overall
Pose Info. spatial frequency SR SPL SR SPL SR SPL SR SPL

VGM [26] ✗ no RGBD ✗ 0.86 0.80 0.81 0.68 0.61 0.46 0.76 0.64
Neural Planner [27] ✔ global RGBD ✗ 0.72 0.41 0.65 0.39 0.42 0.27 0.60 0.36

NTS [28] ✔ global RGBD ✗ 0.87 0.65 0.58 0.38 0.43 0.26 0.63 0.43
ANS [29] ✔ global RGBD ✗ 0.74 0.21 0.68 0.23 0.30 0.11 0.58 0.18

Meta-Explore (homing) ✔ local RGBD SOS 0.82 0.61 0.83 0.61 0.70 0.48 0.78 0.57
Meta-Explore (localgoal) ✔ no RGBD SOS 0.94 0.84 0.88 0.63 0.71 0.18 0.84 0.55

Table 5. Evaluation results for Image-goal Navigation Task.
(SR: success rate, SPL: success weighted by path length)

respectively. The difficulty of each episode is determined
by the geodesic distance between the initial and the goal
location; easy: 1.5 m∼3 m, medium: 3 m∼5 m, and hard:
5 m∼10 m. The actuation noise model [29] is also applied
to the agent in order to evaluate in realistic situations.
We also demonstrated navigation experiments in the real
world using a Jackal robot. The episodes are sampled from
simulation point goal episodes with all difficulties; easy,
medium and hard. We demonstrate both straight and curved
trajectories to evaluate that our model is not task-specific.
We used the model only trained in Habitat simulator with
Gibson dataset. To collect panoramic RGBD observations,
we use one panoramic RGB camera and four front-view
RGBD cameras. In order to implement collision avoidance
similar to the construction of navigable mesh in Habitat
simulator, we implemented a collision avoidance module
by clipping the action value based on the depth image
observation.

D.2.3 Baselines

We compare our image-goal navigation policy with vari-
ous baselines. Active Neural SLAM (ANS) constructs a
top-down metric map and uses a hierarchical structure con-
sisting of global and local policies. The global policy out-
puts long-term goals, which are used to generate short-term
goals. The local policy uses a geometric path planner to
navigate to a short-term goal. NTS [28] constructs a topo-
logical graph during exploration and plans subgoals with
graph localization and planning, while navigating to the
node with local point goal navigation policy. Neural Plan-
ner [27] constructs a graph using an estimated connectivity
probability calculated from the neural network. VGM [26]
uses unsupervised image-based graph memory representa-
tion to compare the similarity between goal image and the
current observation image. We adapt VGM for graph con-
struction and local navigation policy. PCL [33] encoder
with ResNet18 [34] backbone network is used as the visual
encoder for VGM [26].

D.2.4 Evaluation Metrics

We evaluate both success rate (SR) and success weighted by
inverse path length (SPL) [35]. An episode is recorded as

success if the agent takes a stop action within 1 m of the
target location. SR is denoted as the number of successes
divided by the total number of episodes, E. SPL is calcu-
lated as 1

E

∑E
i=1 Si

li
max(pi,li)

. Si denotes the success as a
binary value. pi and li denote the shortest path and actual
path length for the ith episode. For each task difficulty, SR
and SPL are measured separately.

D.2.5 Experiment Results

Detailed comparisons with the baseline methods are shown
in Table 5. The results show that the continuous version
Meta-Explore and SOS features help navigation and the ex-
ploitation mode provides corrections for misled exploration
or undesirable actions. Compared with the exploration pol-
icy baseline VGM [26], Meta-Explore shows an enhance-
ment in the overall success rate by 10.5%. The results im-
ply that local goal search helps the agent escape from the
current location when the agent recurrently explores a local
area but cannot find the target location. Exploitation can
reduce unnecessary exploration and help the agent reach
the target goal before the maximum time horizon. Among
two methods of exploitation, local goal search outperforms
homing, presumably because of the noisy actuation model
used in the simulator. Due to the noisy actions, the agent
can hardly return to a previously visited location by directly
reversing the action sequence.

Comparing our method with other graph-based hier-
archical navigation methods, Meta-Explore outperforms
ANS, Neural Planner, and NTS in the success rate. Our
model shows lower performance in SPL for hard episodes
while the success rate is higher than the baselines. This
implies that the exploitation mode of the proposed method
allows the agent to explore more uncovered areas. Mean-
while, the proposed method appears to yield a positive im-
pact for easy episodes, with the increase on both success
rate by 9.3% and SPL by 5.0%. Specifically, our method
outperforms ANS in terms of both success rate and SPL
across all episodes. When compared to Neural Planner and
NTS, our approach shows better performance in both suc-
cess rate and SPL for easy and medium episodes, while out-
performing Neural Planner and NTS in success rate for hard
episodes. On the other hand, the proposed method shows
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Figure 7. Experiment visualization for image-goal navigation task in continuous environment. The mode selector detects stuck event
at t = 76 and switches the explore mode to exploit mode. Then, the agent returns toward the local goal, which is chosen as a position nearby
one of the nodes in the previously constructed graph.

lower SPL for hard episodes than NTS and Neural Planner.
This implies that Meta-Explore tends to explore uncovered
areas in both successful and unsuccessful episodes, which
could be the result of using the SOS features to understand
scenes. Comparing the proposed method using different ex-
ploitation methods (homing and local goal search) shows
that searching for a local goal leads the agent to better es-
cape from a local area. Figure 7 shows a simple scenario of
image-goal navigation using Meta-Explore. The mode se-
lector detects a regretful situation when the agent is recur-
rently exploring a local area but cannot find the target loca-
tion. Hierarchical exploration via local goal search helps the
agent overcome the situation and move toward the global
goal in fixed time.

D.3. VLN in Continuous Domain

Image-goal navigation results in complex settings (con-
tinuous environments with noisy actions, max∼300 steps)
imply that our model can be transferred to long-horizon
VLN with noisy actions. We further extend the proposed
method in continuous environments to solve the VLN-CE
[36] task. In the VLN-CE [36] task, our agent constructs a
topological map by using Conti-CMA [37] as a baseline to
find reachable nodes (i.e., waypoints) and reuses the map in
the exploitation mode. We compare our continuous version
Meta-Explore with various navigation baselines1: VLN-
CE [36], HCM [38], SASRA [39], and Conti-CMA [37].
We evaluate algorithms using the success rate (SR), success
weighted by inverse path length (SPL), oracle success rate
(OSR), trajectory length (TL), and navigation error (NE),
following the definitions of the evaluation metrics in the pa-
per.

1† indicates reproduced results.

Methods Memory Exploit SR↑ SPL↑ OSR↑ TL↓ NE↓
VLN-CE [36] Rec ✗ 32 30 40 8.64 7.37
HCM† [38] Rec ✗ - - 43 15.61 8.93

SASRA [39] Semantic Map ✗ 24 22 - 7.89 8.32
Conti-CMA† [37] Top. Map ✗ 41 35 51 10.90 6.20

Meta-Explore (Ours) Top. Map local goal 49 38 54 14.88 4.25

Table 6. Evaluation results in the VLN-CE val unseen split.

D.3.1 Experiment Results

Results in Table 6 show that our method outperforms other
baselines by at least 19.5% in the success rate, 8.6% in
SPL, and 5.9% in OSR. We excluded the results of HCM
for SR and SPL because HCM measures SR, SPL using or-
acle stop in the official code, which is not allowed in other
baselines. We address that our model can be transferred to
long-horizon (max. step 300) VLN with noisy actions in
complex settings, as demonstrated by image-goal naviga-
tion results in Sec. D.2.
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