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In the supplementary materials, we elaborate the imple-
mentation details for our Text2Scene (Sec. A), the impact
of seed (Sec. B), motivation of global context (Sec. C) ad-
ditional visual results (Sec. D, Sec. E, Sec. F) and through
algorithm (Sec. G).

A. Implementation details
A.1. Network Architecture

The input to the LNSF is the positional encoding of the
3D coordinate, coefficients of the eigenfunctions of mesh,
and part segment id, and the output is the color of the vertex.
Each vertex p ∈ R3 is mapped to a 256-dimensional Fourier
feature applying by γ(p) = [cos (2πBp) , sin (2πBp)]
where B is randomly sampled from N

(
0, 52

)
. Also, the co-

efficients of the eigenfunctions corresponding to the top 128
eigenvalues are used to reflect the intrinsic geometry. The
neural network for LNSF consists of five 256-dimensional
layers. For activation, tanh is used for the last layer, and
ReLU is used for others. In addition, the weight of the final
layer is set to zero; thus, the colors of all vertices meshes are
initially set to a constant color.

For part-aware geometric deformation in Sec. 3.2.3, we
branch the last layer into two while having the first four
layers in common, and each last layer outputs the color and
displacement respectively [3].

A.2. Training Details

For all experiments, we use the Adam optimizer [1] with
an initial learning rate of 5 × 10−4 and the learning rate
decay factor as 0.9 for every 100 iterations. We sample
camera poses on a hemisphere with a radius r. The viewing
angles are sampled from Gaussian distribution with σ =
π/4 around the front view of objects within the elevation
angle of [10◦, 80◦] and the azimuth angle of [0◦, 360◦]. As
mentioned in Sec. 3.2.3. for detailed stylization, we apply
random perspective transformations and random cropping
and observe 10 − 20% of the original rendered image. A
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color range of each point is set to 0 to 1 by adding half
of the output of LNSF through tanh with the gray color
[0.5, 0.5, 0.5].

For parameters, we set r = 2.0 for rendering, λ1 = 0.2
for structure stylization and λth = 3.0 for merge segments.
Also, we set λ2, λ3 as 0.2 for base color assignment and
α = 0.3 for detailed stylization. For all experiments, we use
a pre-trained CLIP learned with a ViT-B/32 backbone [6].

A.3. Design Choice for Structure Stylization

In Sec. 3.1, we stylize structure by retrieving texture from
a pre-defined texture set using MATch [7]. Here, we show
undesirable artifacts when the structural components are not
separately handled and were created using CLIP [6]. We
generate walls directly from the designed MLP or optimize
the weights of a CNN that translates a fixed random noise z
to an output image [4, 8]. As shown in Fig. A.1, we observe
various artifacts, such as a number of bricks or grass. On the
other hand, MATch [7] successfully samples a candidate of
structure components.

Figure A.1. Wall texture generation through MLP, CNN, and
MATch [7]. Generation with CLIP embedding results in creat-
ing texture with multiple objects and perspective distortions, which
is not appropriate for texture patterns for structural components
with a flat geometry. The text ‘a wall’ is used for CLIP.

B. Impact of Seed, Limitation and Diversity
From the same text prompt, CLIP can generate different

2D images, and this property extends when we use CLIP
embedding to discover part information or stylize 3D assets.
The additional degree of freedom stems from the random
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seed, as observed with the convergence pattern of genera-
tion using CLIP. Figure B.2 shows different part discovery
results from the same initial super segments. Different part
segments are sometimes merged into one based on the con-
vergence condition and might fail to discover the correct part
information.
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Figure B.2. From the same initial super segments, different parts
can be observed through random seeds.

The different random seeds can result in diverse results
after the part discovery. Figure B.3 shows the stylization
results of the same input text with different seeds. Figure B.4
shows stylized scenes of different seeds with the same input
target image It and the style description ts.

Figure B.3. From the same text prompt, we can generate diverse
objects through different random seeds. ‘a book of Harry Potter
and the Sorcerer’s Stone’ (top), and ’a sofa, minimal style’ (bottom)
is used for description, respectively.

C. Motivation of Using Text for the Global Con-
text

We discuss our choice of the shared text description to
enforce the clip loss in the structure stylization (Sec. 3.1)
and the part-level base color assignment for the object colors
(Sec. 3.2.2).

For the structure stylization, we use an additional text
prompt Ts, ‘a structure of a room’ to provide the context with
the clip loss. Figure C.5 shows randomly generated structure
and their resulting clip scores against the text prompt Ts,
Lclip (Is, Ts). The samples indicate that the resulting clip
scores, to some extent, reflect how natural the texture choices
are. Therefore, we can exclude unnatural stylization of the
structural components with the simple text.
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Figure B.4. Diverse scenes could be generated through different
random seeds.
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Figure C.5. Lclip (Is, Ts) with the renderings of structures from
randomly sampled choices of textures.

For objects within the scene, we assign part-level base
colors with the text prompt T , which represents the types
of the scene, such as ‘a bedroom’, and an additional global
signal Lclip (I, T ). Figure C.6 shows the results when each
object is independently stylized using only the object clip
loss compared to stylization with the additional global clip
loss at the base color assignment step. The color loss be-
tween the target image, Lhist (I, It) is not used. With the
global clip loss, we learn the assignments of the scene with
harmonious colors of the scene-level rendering. Also, as
shown in the results of the user study in the main paper (Ta-
ble. 1), we generate a more realistic texture for the holistic
scene with the color histogram of the target image in addition
to the global clip loss.

D. Additional Results of Part Discovery

Our realistic stylization greatly benefits from the stable
part discovery to assign different textures. Figure D.7 con-
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Figure C.6. Base color assignment results (left), and the final results
with additional learned details (right). With the global clip loss,
more harmonious base colors are assigned from which additional
details are generated. The color histogram loss against the target
image is not used.

tains intermediate results of the entire pipeline, starting from
the initial super-segments followed by iterations of merged
segments until convergence. Figure D.8 contains more re-
sults of the discovered parts of various objects. It shows that
the results correctly capture different parts that convention-
ally are colored with different materials or textures.

We observed a 76.6% success rate for the part recovery
without the help of any part dataset. Note that there is no
public dataset available for ‘texture parts’, which are differ-
ent from functional parts or semantic segmentation, and we
evaluated with a manually annotated dataset.

E. Comparison to Other Text-to-3D Methods

Parallel to our method, several methods create 3D con-
tents from text input. such as DreamFusion [5] and Latent-
NeRF [2]. DreamFusion [5] creates 3D contents in NeRF
representation. As shown in Figure E.9, the created vol-
umetric representation tends to be blurry for highly struc-
tured objects, such as beds, while we enjoy more explicit
texture boundaries. We also include a comparison against
Latent-NeRF [2], which supports the mode of updating the
UV-texture map of a mesh using the score distillation loss
proposed by [5]. The color distribution generated with our
method exhibits superior visual quality over their texture
map as our results show clear boundaries obtained from the
part discovery step.

Figure D.7. Intermediate results of part discovery. From the initial
super-segments (left), we show segment {slik} and assigned color
c(slik) at lth iteration and finally show the part discovery results
(right) for each row. Empirically the process converges within two
iterations. Random colors are assigned to each segment.

Figure D.8. Part discovery results for diverse categories of objects.
Random colors are assigned to discovered parts.

Figure E.9. Result from [5], [2], and ours with discovered part in
order.

F. Additional Stylization Results

Although it was not obvious from the main manuscript,
our stylized objects contain plausible texture even when
observed from diverse points, as shown in Fig. G.10. The in-
dividual objects can be weakly bound by the text description



as shown in Fig. G.11.
Since we stylize the entire object, we can easily manip-

ulate the 3D scene through object removal, replication, or
relocation (Fig. G.12). Also, we show additional stylized
results over various scenes (Fig. G.13), or target image and
style descriptions (Fig. G.14). Finally, for the scene styliza-
tion, our target image can be replaced to natural photographs
(Fig. G.15).

G. Text2Scene: Algorithm
We provide the algorithm to describe the flow of the entire

pipeline in Algorithm 1.
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Figure G.10. We stylize whole 3D objects and provide a diverse view of stylized objects.
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Figure G.11. Object stylization results in the specific text description.



Figure G.12. From original scene (left), we can manipulate scene by object removal, replication and relocation.

Livingroom 1 Bedroom 1 Bedroom 2Livingroom 2

Figure G.13. Additional stylize results for various scenes. We validate our algorithms for four scenes.
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Figure G.14. Results of the same scene with different stylization, using different target images and style texts.
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Figure G.15. Results of setting the target image as a natural photograph.



Algorithm 1 Overall pipeline of Text2Scene

Input: 3D scene S = {W,O} whereW is a structure components and O = {Mi} is a set of 3D mesh objects,
Corresponding class labels and optionally have text descriptions for each Mi,
Target image It, specific appearance style description ts

Output: Stylized 3D Scene S reflecting object specific information and given conditions

# Structure StylizationW (Sec. 3.1.)

1: Score = ∅
2: for i = 1, 2, . . . , N do
3: W ← set_texture ▷ Sample texture from texture set
4: Is ← render(W)
5: Score = Score ∪ {criteria(Is, It,Ts)}
6: end for
7: [W∗, ]← top-1[Score]

# Part Discovery for each 3D object (Sec. 3.2.1.)

8: for i = 1, 2, . . . , |O| do
9: {s0ik} ← superseg(Mi) ▷ Initial super-segments

10: l = 0
11: while num of segments does not decrease do
12: Set c(slik) as grey
13: Generate a graph Gli
14: for iter = 1, 2, . . . , L do
15: IMi ← render(Mi)
16: L ← Lclip(IMi ,Ti,c)
17: Update c(slik)
18: end for
19: Update graph Gli
20: {sl+1

ik } ← merge({slik}) ▷ Merge segments
21: l = l + 1
22: end while
23: end for
24: Discovered Part {sik}

# Part-level Base Color Assignment (Sec. 3.2.2.)

25: ∀Mi ∈ O, set c(sik) as grey
26: for iter = 1, 2, . . . , L do
27: I← render(W∗,O)
28: IMi ← render(Mi), ∀Mi ∈ O
29: L ← Lcolor,scene + Lclip,scene

30: Update c(sik), ∀Mi ∈ O
31: end for
32: Part-level Assigned Color c(sik)

# Detailed Stylization (Sec. 3.2.3.)

33: for i = 1, 2, . . . , |O| do
34: for iter = 1, 2, . . . , L do
35: Mi ← update_local_texture(Fi,θ(Mi)) ▷ Local Neural Style Field (LNSF)
36: IMi ← render(Mi)
37: L ← Lclip(IMi , T

+
i )

38: Update LNSF Fi parameters
39: end for
40: end for
41: Stylized Object Mi
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