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1. Implementation details
Zero-shot relevance mask generation 2D relevance mask
M given tmask is generated using the CLIP model and
is used as a pseudo label for AFN training. Specifically,
we denote a attention map of block b of the CLIP image
encoder EI as A(b), and its gradients with respect to the
model output y as ∇A(b) := ∂y

∂∇A(b) . Here y is the cosine
similarity between the text embedding ET (tmask) and the
image embedding EI(I). Then the aggregated relevance
N ∈ Rs×s for the CLIP encoder consisting of B blocks is
computed as:

Ā(b) = Is + Eh(∇A(b) ⊙A(b))+

N = Ā(1) · Ā(2) · . . . · Ā(B),
(1)

where superscript x+ denotes max(x, 0) operation, Eh is
the mean operation along the transformer heads dimension,
⊙ is the Hadamard product, and s is a sequence length
of input tokens. Then we take the first row of N which
corresponds to the relevance for [CLS] token N[CLS] ∈ Rs,
and reshape N[CLS][2:s] to

√
s− 1 ×

√
s− 1 matrix.

Finally, the matrix is upsampled to M ∈ RHV ×WV using
bi-linear interpolation, where HV and WV are the height
and the width of the neural rendering resolution before the
super-resolution. Please refer to transformer visualization
methods [1, 4] for theoretical background and additional
details.

Network details 8-layer Multi-Layer Perceptron (MLP)
with a width of 256 and LeakyReLU for nonlinear activa-
tion is used for all three modules: Latent Residual Mapper
(LRM), Attention Field Network (AFN), and Deformation
Network (DN). For DN and AFN, all the arguments are
concatenated and used as input to the model.

Training details Our model utilizes pretrained EG3D [3]
model with 1282 neural rendering resolution for FFHQ [7]
and AFHQv2 CATS [6], and 642 for ShapeNet Cars [5, 8].
We use the learning rate of 3 × 10−4, and the lambda
values used for the training is λL2 = λmask = 0.1,
λCLIP+ = λid = 0.3, and λtv = 1. As shown in Fig. 9

FFHQ

Fidelity Locality ID Text reflectance

CLIP-NeRF 2.75 4.50 2.43 4.33
FeNeRF + SC 2.98 4.13 3.18 5.48
IDE3D + SC 9.03 5.95 5.45 6.63

LeNeRF w/o AFN 8.53 8.38 9.40 9.55
LeNeRF (Ours) 9.25 9.53 9.98 9.70

Table 1. Results of a user study on four metrics: fidelity, locality,
identity preservation (ID), and text reflectance. Scores are in the
range of 1-10 and are averaged over 40 surveys. Best in bold.

of the main paper, we use smaller values of λsparsity for
manipulations that require geometric changes, so that we
obtain a smooth mask over a wide region, and use larger
values otherwise. The training takes 4K iterations (about 2
hours) on a single NVIDIA A100 40GB GPU.

Code release Please refer to the attached code.zip for more
details.

2. Additional results

User study We requested 40 users to evaluate LENeRF
along with various baselines in the range of 1 to 10
regarding 1) the fidelity, 2) the locality, 3) the identity
preservation, and 4) how well the text prompt is reflected
in the results. Table 1 shows that LENeRF outperforms all
baselines by a large margin for each criterion.

Single-view 2D image editing We present results of single-
view 2D image editing in Fig. 1. 2D image is inverted
into a 3D model via pivotal tuning inversion (PTI) [9], and
manipulated using LeNeRF.

ShapeNet Cars We demonstrate results for ShapeNet Cars
in Fig. 2.

Lambda interpolation We can change the rate of manip-
ulation by controlling the lambda value of residuals in Eq.

1
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Source

A
ngry face

Bangs hair
Blue eyes

Pink lips

Figure 1. Results of single-view 2D image editing. The first column is the source image, the text on the right is tedit (e.g., Pink lips), and
the bold underlined word refers to tmask (e.g., lips).

• , red wheels, red, green, blue, 

cars 학습중: red roof
/project/dataset/users/liam.1234/localnerf_logs/logs/eg3d_cars/2022_11_19_13_12_01

29
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Source Red wheels Red car Green car Blue car

Figure 2. Results of ShapeNet Cars. The text written below is tedit
(e.g., Red wheels), and the bold underlined word refers to tmask

(e.g., wheels).

(4) of the main paper. That is, we can control λ of

wi = (w1
s + λ∆w1, ...,wN

s + λ∆wN ). (2)

We demonstrate the results in Fig. 3.

Additional results Fig. 4 shows additional results of our
method. We visualize the original images, manipulated
images, predicted relevance mask M, and the volume-
rendered attention field M̂t. Also, please refer to the videos
for editing quality and multi-view consistency.

3. Limitation and future work

Our method depends on the capability of the pretrained
3D generator and the CLIP model. Therefore it struggles to
generate content outside of the generator’s latent space and
results in degenerate solutions. CLIP is an encoder-only
model that does not have an optimal embedding space for
generation capabilities. Instead, we might seek to utilize re-
cently proposed 2D text-to-image diffusion models [10, 11]
which can provide stronger priors for manipulating 3D
models. Also, our method cannot control the degree of ma-
nipulation, e.g., how much to open the mouth. Utilizing a
deformable 3D generator along with control handles such as
3D Morphable Models (3DMM) [2] is a possible approach
to overcome the such limitation.

References

[1] Sebastian Bach, Alexander Binder, Grégoire Montavon,
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Figure 3. We can change the λ value that is multiplied to the delta latent code ∆w estimated by Latent Residual Mapper (LRM) to control
the manipulation strengths.
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(b) Thick eyebrows (tedit = Thick eyebrows, tmask = eyebrows)
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Figure 4. Additional results of LENeRF. We visualize the original images, manipulated images, predicted relevance mask M, and the
volume-rendered attention field M̂t. 5
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