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In this supplementary material we provide additional de-
tail for some of the steps in our method and include the
ranges and values for the various parameters and hyper-
parameters. In Appendix G we provide a more detailed
comparison between our method and the two other meth-
ods available. We report the results of an ablation study in
Appendix H and in Appendix I we describe the three sup-
porting videos (available here: https://doi.org/10.
6084/m9.figshare.22310650) that demonstrate the
method and showcase some of the results.

A. Geometric model: The Bishop frame

3D curves are typically expressed in the Frenet frame
T'N B where T refers to the normalised tangent of the curve,
N is the ‘normal’ vector defined as the normalised arc-
length derivative of T" and B is the ‘binormal’ vector ob-
tained through the cross product B = T" x N. This frame
is defined along the curve using the Frenet-Serret formulas:

T = kN, (S1)
N = —xkT + 7B, (S2)
B=—7N, (S3)

where dot denotes the arc-length derivative d/ds and x and
T are scalar fields generally called curvature and torsion re-
spectively. For simplicity we leave the arc length parameter
s implicit in all equations.

A difficulty with the Frenet formulation is that the tor-
sion, 7, is strictly undefined for straight curves, or locally
wherever k = 0. Zero (or near-zero) curvature is expected
in an animal that propagates sinusoidal waves along its body
and at these points we cannot guarantee a unique and con-
sistent parametrisation. To overcome this ambiguity we use
the Bishop frame [S1], given by TM!M? where T again
refers to the normalised tangent of the curve and M, M?
form an orthogonal basis. The Bishop equations define how
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the frame changes along the curve:

T =m'M' +m>M?, (S4)
M'=—m!'T, (S5)
M? = —m>T, (S6)

where m!, m? are scalar fields analogous to , 7 that ex-

press the curvature in the M' and M? directions respec-
tively.

While the Bishop frame improves the zero-curvature
problem, it does leave a degree of freedom in the choice of
the initial value of M*' (M) that can point in any direc-
tion perpendicular to the initial tangent 73,,;;. Any rotation
of M} .. around T}, will result in a different (m*, m?) rep-
resentation of the curvature, but this rotation angle can eas-
ily be recovered and different representations subsequently
aligned.

As Bishop describes in [S 1] (and expanded here for com-
pleteness) the two frames are related through their scalar
field components. & can be recovered from m!, m? using

Egs. (S1) and (S4) as:

K= ar = |m1M1 +m2M2| =+/(m1)2 + (m?)2.
(S7)

ds
To recover the torsion 7 that describes the rotation of the
Frenet frame around N let 6 be the angle between N and
M?*, then

N = M'cosf + M?sin#, (S8)
B =—M"sin6 + M? cos0, (S9)
m' = kcosf and (S10)
m? = ksin6. (S11)

Differentiating Eq. (S8) with respect to arc length and sub-
stituting from Eqgs. (S5) and (S6) we have:

N =0 (—M"sin6 + M? cos 0) (S12)
+ T (m' cos — m?*sin ) (S13)

= 0B — KT (cos? 0 + sin? 0) (S14)
— 7=40. (S15)
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Thus, in the words of Bishop, “x and an indefinite integral
[ 7ds are polar coordinates for the curve (m!, m?)”.

B. Project: Pinhole camera model

The imaging setup is modelled using a triplet of pinhole
camera models with tangential and radial distortion [S2].
A single pinhole camera model is used to project 3D points
into an image plane using a perspective transformation. The
15 parameters required for each camera model are sum-
marised in Table S3. These are divided into intrinsic, ex-
trinsic and distortion parameters. The intrinsic parameters
are (fu, fy, s, Cy), where f, and f, are the focal lengths
and (¢, ¢y) is a principal point usually set to the image
centre. The extrinsic parameters — angles (g, ¢1, ¢2) and
a translation vector ¢ — define the extrinsic transformation
M = [R]t], where

R = R.(¢o)Ry(¢1)Ra(92), (516)
to

t= |t (S17)
ta

and R is a rotation matrix composed of three axial rotations:

cos¢g —singy 0
R.(¢o) = | singg cos¢g 0], (S18)
0 0 1
cos¢p 0 sing;
R,(¢1) = 0 1 0 and (S19)
—sing; 0 cosagg
1 0 0
Ry(¢2) =0 cosga —sings | . (S20)
0 sings  cosoo

The radial and tangential distortion coefficients, (k1, ko, k3)
and (p1, p2) respectively, complete the parametrisation.

Due to imperfections in the camera model (and possi-
bly environmental vibrations of the setup), using fixed pin-
hole camera model parameters yields results with errors
that vary over time and space (i.e. the accuracy depends
on the worm position). Allowing the camera parameters to
change freely between frames resolves the reconstruction
errors, but the problem becomes under-determined and in-
troduces drift into both the camera and curve parameters re-
sulting in incorrect tracking. To compensate for these errors
without allowing full freedom of movement we use fixed
pinhole camera parameters and introduce frame-dependent
variables that emulate relative movement between the cam-
eras, hence limiting drift and providing stable reconstruc-
tions.

To this end, the standard pinhole camera model is ex-
tended to include n® = (dz,dy, dz), relative shifts along

the local coordinate axes (see Sec. 4.1 in the main text).
These parameters approximate changes in the relative posi-
tions and rotations of the cameras by applying pixel trans-
lations after the perspective transformation. Without loss
of generality 1° can be limited to one direction per camera,
thus capturing only relative shifts. The shifts used in camera
index c are given by (s, s, ). where:

(825 8y)o = (dz,0), (S21)
(82,8y)1 = (0, —dy), and (S22)
(52, 8y)2 = (0, dz). (S23)

For 3D object point (X,Y, Z), the corresponding pro-
jected image point (u,v) is generated using the following
procedure (when z # 0):

T X
y|l=R[Y | +¢, (524)
z A
o =24 (S25)
z  fa
y =Y % (S26)
z fy
7,,2 — x/Q _|_ y/27 (827)
E=1+kir? 4 kor? + kgrS, (S28)
z" = ka' + 2p12’y + pa(r? + 227, (S29)
y" = ky' +pi(r? +2y”%) + 2paa’y/, (830)
u\ [ fo2 s
()- ()

Note the inclusion of the shift parameters in Eqs. (S25)
and (S26).

C. Rendering parameters: Tapering

The rendering stage generates super-Gaussian blobs at
the projected image locations of each curve vertex (n). The
shape of the blobs in camera ¢ depends on the optimisable
parameters: the scale o, the intensity ¢, and the exponent
used in the Gaussian p.. To capture the worm shape we
taper the values of o, and ¢, from their optimisable val-
ues along the middle 60% down to fixed minimum values
omin and tmin respectively at the ends. The tapered outputs
Ge, e € RY are calculated thus:

Omin(1 — 32) + 0.5 0<n<N/5
Ten =4 O¢ N/5<n<4N/5
n—4N n—4aN
0o(1 — F2N2) + omin iinbs AN/5<n <N,
(S32)



and
Lmin(l_%)‘FLC% 0§7’l<N/5
Ten = 4 e N/5<n<4N/5
n—4N/5 n—4N/5
te(1 = R=5802) + tmin i—ings  AN/5 <n < N.
(S33)

These values are used in Eq. (2) in the main text.

D. Mask generation

The input images are masked to focus the pixel-errors
to a single region, local to the predicted curve, that is con-
sistent across all three views and excludes any interference
that does not correspond to the same mass. The masks
M € R3*wXW are generated in a similar way to the renders
R (see Sec. 4.2 in the main text), but with a few notable dif-
ferences. First, the blobs B are normalised and weighted by
the relative scores,

B A
——r .8, (S34)
2 Ben

then combined by taking the maximum values as before,

/ —
Bc,n -

M(/;77j7j = maX{Bé7n7i7j}71,:0,...,N—1; (S35)
and finally passed through a threshold:
1 M ;>0
M, ;= &hl = (S36)
” 0.2 M.,;<®6.

For © = 0 we have M = 1 everywhere and no masking
occurs. For © ~ 1 the mask shrinks around the blobs that
correspond to the highest scoring vertices, making M = 0.2
almost everywhere. In all our experiments we fix © = 0.1
as this appears to produce a good balance. Note that we
do not completely exclude the remaining points, but just re-
duce their intensity. This allows some gradient to flow from
outside the detection region which is especially important
in the early stages when none of the curve may be inter-
secting the correct pixel mass. It is also important to detach
the masks from the gradient computation at this stage oth-
erwise the curve will simply shrink and fade away from the
high-intensity pixels thus minimising pixel errors simply by
detecting fewer pixels.

E. Centre-shifting

The curve is periodically shifted along its length to cen-
tre it over the pixel mass in all three views. An unbal-
anced alignment can be seen from the score profile when
the centre-of-mass index of S (n) is not in the middle of the
curve (i.e. i # N/2). We can then shift the curve along
its length using 7 as the new midpoint, removing vertices

from the low-scoring end and adding new vertices to the
high-scoring end. The low-scoring end will consequently
improve, and since there is no expectation that the new ver-
tices will match the images this typically means the high-
scoring end worsens; rectifying the imbalance.

To perform a centre-shift we calculate the centre of mass
of the score profile and the degree of imbalance as:

n= M, and
Zn S”
ns =n— N/2.

(S37)

(S38)

Then we update the curvature by shifting the values and
decreasing linearly to zero at the ends. L.e. for ngs > 0,

KN—nS—l(l - N_infl:n_‘—l) N—ng<n< N,

(S39)

and similarly for n, < 0. Finally, new position and orien-

tation parameters are calculated from the adjusted midpoint
and updated curvatures using Eq. (1) from the main text:

K. 0<n<N —ng,
Kne{ tne =n n

(P, T,M") « F (P, Tn, My, K, 1,1). (S40)

This process is illustrated in Fig. 6 in the main text.

Centre-shifting the curve occurs between gradient de-
scent optimisation steps. In practise, shifting after every
step quickly leads to instabilities as the new points are
not afforded the time required to align them with the im-
ages. Furthermore, it is unrealistic to expect a perfect
balance can be sustained and an unconstrained n, means
large shifts may be applied, possibly due to a change in
the camera parameters or some transient interference, that
would destroy extensive sections of the curve. To mitigate
these problems we only apply centre-shifting every « steps
when |ng| > BN and then restrict the shift size to v (i.e.
ns < min{ng,v}). In our experiments we find values of
a € [3,6], 8 € (0.05,0.1) and 7 € [1, 2] provide the neces-
sary stabilisations (Table S6).

F. Optimisation

The non-optimisable parameter values and ranges that
are used in our experiments are outlined in Table S6. The
biggest factors affecting the choice of parameters are the
magnification and individual worm size — both of which
vary between experiments. These determine the required
image size, w, and inform the estimates for the length
bounds, /nin and [, The super-Gaussian blobs are gener-
ated in corresponding w X w images, so the minimum scales
and intensities at the tips, omin and tmin, must also change
accordingly with the image and worm size.

Table S7 lists the weighting coefficients used in the com-
bined loss calculation (Eq. (15) in the main text). Values of



wsm and w; may vary between experiments to capture the
different dynamics observed in the different environmen-
tal conditions (specifically, concentration of the gelatin).
For example, when the worm is deforming quickly (in low-
viscosity experiments) there are large postural changes be-
tween frames and therefore the temporal loss L, is relatively
big. In this case a smaller value of wy is used to prevent the
reconstruction lagging behind the worm. Similarly, when
the worm is deforming slowly (in high-viscosity experi-
ments) it frequently forms tightly coiled postures in which
case the smoothness loss L is large and a smaller value
for wgy is more suitable. As discussed in the main text,
when reconstructing full sequences the initial curve and pa-
rameters are used for the initial guesses to the subsequent
frame. This preserves head-tail orientation and consistency
through complex manoeuvres.

The learning rates are shown in Table S8 — these are fixed
for all experiments. Optimisable camera, curve and render
parameters are summarised in Tables S3 to S5 respectively.

G. Comparisons with previous methods

In Fig. 8 in the main text we compare results against two
existing methods [S3,54]. These methods only provide pro-
jected midline coordinates, so in order to use our pipeline to
generate renders and calculate £, we need to provide ren-
derer (blob) parameters. We can use values found for our
midlines, but this introduces a bias towards our method as
these parameters are only optimal for our midlines. To miti-
gate against this we initialise with our values but re-optimise
for each frame until convergence (keeping the curve and
camera parameters fixed) to ensure optimal rendering pa-
rameters are found for each midline. In Fig. S1 we show
the effect of the re-optimisation across the same clip. As
expected, re-optimisation reduces the loss for both meth-
ods, but the improvement is fairly marginal. The improved
losses are used for comparison in the main text.

In Table S1 we evaluate midline quality of all three meth-
ods against ground-truth manual annotations. This unbiased
evaluation (as only projected midline points are used) shows
our method to be more accurate. However, the sample size
is limited, more so as the other methods only provide results
for roughly half of the available annotations.

H. Ablation study

We demonstrate some of the effects of masking (Fig. 5),
centre-shifting (Fig. 6) and varying parameters (Movie 1)
throughout the main text. In Table S2 we present the results
from a more thorough ablation study conducted over a typ-
ical ~5min clip to clarify the importance of the different
components of our method.

Optimisable camera (a), rendering parameters (b) and
centre-shifting (c) yield considerable benefit; setting

m— \WT3D reconst

MF (ours) WT3D opt == == reconst opt

T T
0 5000 10000 15000 20000

Figure S1. A comparison between the losses obtained when using
our renderer parameters for Yuval’s Worm-Tracker 3D (WT3D)
[S4] and Salfelder et al.’s ‘reconst’ [S3] midlines vs. the losses
obtained after re-optimising the renderer parameters to better suit
their midlines. Our method (MF) is shown for reference. We show
moving averages over 25 frames (1s).

Method # poses Score \ Total

MF (ours) 487 1.53 (0.51) \ 4h 37 min
reconst 226 1.54 (0.69) | 1h 32min
[53]

MF (ours) 226 1.34 (0.53)

WT3D 237 2.64 (0.92) | 45min
[54]

MF (ours) 237 1.46 (0.59)

Table S1. Mean (and standard deviation) pixel distances between
predicted points and hand-annotated points (see Fig. 7). Total
refers to the overall reconstructed duration using each method.

wse > 0 (d) and regularisation (f) incur a marginal cost
(£ > 0.99) but recover poses with high transparency (d) and
ensure realistic (smooth) poses (f); finally, masking (e) in-
curs a small cost but provides robustness to sequences with
interference (e.g. Movie 1).

I. Supplementary results

Three supporting videos are available here: https://
doi.org/10.6084/m9.figshare.22310650.

In the accompanying Movie 1, the effects of adjusting
some of the parameters listed in Tables S6 and S7 on the
solution are demonstrated. In this video we show the opti-
misation process using paired examples. The same frame
and randomised initial guess are used for each pair and
the optimisation is run for a fixed 2000 steps. The frames
are selected to demonstrate a range of challenging condi-
tions — especially for achieving convergence from a random
guess. The first of each pair shows successful optimisation
using parameter values in the ranges specified in Tables S6
and S7. The second of each pair shows the effect that chang-
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Variant < L, > L =< Ly > /Ref
Ref 3.99e—3 (1.13e—3) 1.000

7.21e—3 (1.97¢—3)  1.807
4.64e—3 (1.42e—3)  1.163
4.29e—3 (1.71e—3)  1.075
3.99e—3 (1.12e—3)  1.000
3.69e—3 (9.00e—4)  0.925
3.96e—3 (1.08¢—3)  0.992

-0 a0 o e

Table S2. Ablation results (mean (and standard deviation) pixel er-
rors and normalised mean) across a typical 7200-frame clip. Vari-
ants: a) no camera parameter optimisation, b) rendering param-
eters (o, ¢, p) fixed to averages from the reference results, ¢) no
centre-shifting, d) no scores-loss (wsc = 0), €) no input masking,
f) no regularisation losses (wsm = wi = 0).

ing one of the parameters has on the converged solution.

We include two further videos demonstrating examples
of both successful and less-successful sequence reconstruc-
tions. In Movie 2 we showcase successful examples. First,
when the worm is well resolved in all three views. Next,
when there is interference from dirt or bubbles and/or poor
focus in one or more views. Lastly, through complex coiling
manoeuvres that include significant self-occlusion.

The limitations of our method are illustrated in Movie
3. These examples, taken from otherwise successful recon-
structions, demonstrate that when significant loss of focus
is combined with coiling, heavily occluded, postures the re-
construction can fail. The exact degree of failure is difficult
to ascertain for the exact same reasons and only by watch-
ing the full sequences can we be convinced that the recon-
struction is incorrect. This suggests that incorporating more
temporal information may help to resolve these fail-cases,
but we leave this for future investigation.
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Parameter  Purpose Domain

fuofy Focal lengths Rt
(Caycy) Principal image point R
0, b1, P2 Rotation angles [0, 27)
t Translation (position) vector R?
(k1,ke,k3)  Radial distortion coefficients RT
(p1,p2) Tangential distortion coefficients Rt
n° Relative shifts R3

Table S3. Camera model parameters. With the exception of n® these are defined for each camera. n° is shared between the models as per
Eqgs. (S21) to (S23).

Parameter  Purpose Domain
P 3D curve vertex coordinates RNx3

T Normalised curve tangent vectors at each vertex location RV >3
Mt Normalised curvature orientation vectors at each vertex location RV*3

K Vector curvature RNx2

l Curve length (Imin, lmax)

Table S4. Curve and Bishop frame parameters.

Parameter  Purpose Domain

o Standard deviation of the super-Gaussian blobs along the untapered middle [Gumin, 50)
¢ 60% of the worm in camera ¢ i

. Intensity scaling factor for the super-Gaussian blobs along the untapered (i, 00)
¢ middle 60% of the worm in camera c i

Pe Exponent used in the super-Gaussian blobs in camera ¢ (0, 00)

Table S5. Rendering parameters.



Parameter  Purpose Value/Range
w (Square) image size 200-350 px
N Number of discrete curve vertices 128

{min Minimum curve length 0.5-1 mm
max Maximum curve length 1-2 mm

Kmax Maximum curvature constraint 3 osculating circles
Omin Standard deviation of the super-Gaussian functions at the tips 2-4 px

Lmin Intensity scaling factor of the super-Gaussian functions at the tips 0.15-0.3

(C) Mask threshold 0.1

o} Frequency of centre-shift adjustments (number of gradient descent steps) 3-6 steps

15} Centre-shift adjustment sensitivity 0.05-0.1

¥ Maximum centre-shift adjustment 1-2 vertices

Table S6. Non-optimisable parameter values and ranges used in our experiments. Listed in the order they appear in the text.

Parameter  Purpose Value/Range
Wpx Weighting of the pixel loss Lpx 0.1
Wee Weighting of the scores loss L 0.01
Wsm Weighting of the smoothness loss L, 10-100
wy Weighting of the temporal loss L 10-100
wj Weighting of the intersections loss L; 0.1-1
Table S7. Weighting coefficients for the different loss terms.
Parameter  Purpose Value
Ap Learning rate for the curve parameters { P, T, M*, K, [} le—3
Ar Learning rate for the rendering parameters {o, ¢, p} le—4
Ap Learning rate for the camera parameters 7, le—5
Amin Minimum learning rate for all parameters le—6

Table S8. Learning rates for the different parameter groups.
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