
Supplementary material
LayoutDM: Discrete Diffusion Model for Controllable Layout Generation

A. Implementation Details

A.1. Baseline

We explain more details on task-agnostic layout genera-
tion baselines using masking, especially when the original
model is not designed for layout generation. We mostly
describe unconditional generation cases, but partial layout
fields can be easily injected by hard masking.
BART: BART is a denoising autoencoder and was origi-
nally designed for learning a sequence-to-sequence model
for text generation. Text is usually represented as a 1D se-
quence of discrete tokens. Since we also handle the shuffled
layout as a 1D sequence of discrete tokens during training,
a BART-like model may be another solid baseline. To build
a task-agnostic layout generation model, we apply random
masking similar to the noise pattern of MaskGIT [1], in-
stead of text-specific noises, such as span-level masking.
MaskGIT∗: MaskGIT [1] is originally built for uncon-
ditional image generation. Following recent two-stage
approaches for efficient image modeling, such as VQ-
GAN [3], MaskGIT first generates a small number of dis-
crete tokens and subsequently decodes those tokens into a
continuous high-dimensional image by a pre-trained neural
decoder. We consider the first generation part of MaskGIT
to be another baseline. We use [PAD] to enable variable-
length generation. For a masking schedule during decoding,
i.e. fraction of the tokens masked in each iteration, we em-
ploy a cosine schedule as in MaskGIT.
VQDiffusion∗: VQDiffusion [4] is a discrete diffusion-
based model designed for text-to-image generation. To
adapt VQDiffusion for conditional layout generation with
minimal modification, we (i) remove the text condition-
ing branch in the reverse process, (ii) replace the image
tokens with layout tokens, and (iii) add [PAD] token to
enable variable-length generation. As described in the
main manuscript, there are three major differences between
VQDiffusion∗ and our proposed LayoutDM: modality-wise
diffusion, decoupled positional encoding, and adaptive
quantization.

We adjust the number of parameters for each model to
have about 12M parameters for a fair comparison. We show
the exact numbers in Tab. 1.

A.2. Relationship Guidance

Similarly to the main manuscript, let us denote the pre-
dicted coordinates of an i-th element (x̂i, ŷi, ŵi, ĥi) ∈
[0, 1]4. We follow [9] to define the loss for penalizing
size and location relationships between elements that do not
match user specifications. For example, if we want to make
the j-th element larger than the i-th element, the loss is de-
fined by:

glg(i, j) = max
(
(1 + γ) ŵiĥi − ŵj ĥj , 0

)
, (1)

where γ is a tolerance parameter, which is empirically set
to 0.1. If we want to make the j-th element above the i-th
element, the loss is defined by:

gab(i, j) = max

((
ŷj +

ĥj

2

)
−

(
ŷi −

ĥi

2

)
, 0

)
, (2)

which compares the bottom of the j-th element and the top
of the i-th element. Please refer to the code for losses for
the rest of the relationships.

Although it is not experimentally demonstrated, we be-
lieve that it is also possible to incorporate area, aspect ratio,
and reading order constraints used in Attribute-conditioned
GAN [14].
• Area: given a target area of the element ai ∈ R, we use
|ai − ĥiŵi| as a loss.

• Aspect ratio: Given a target aspect ratio ri ∈ R, we use
|ri − ĥi

ŵi
| as a loss.

• Reading order: we follow [22] and define that the reading
order solely depends on the distance between the left-top
of the canvas and each element. We first compute the

distance by d̂i =

√
(x̂i − ŵi

2 )2 + (ŷi − ĥi

2 )
2. We can

use max(d̂i − d̂j , 0) as a loss to make the i-th element
come before the j-th element in the reading order.

A.3. Hyper-parameters

We search for the best hyper-parameters using a valida-
tion set. During sampling from pθ(zt−1|zt) for all the tasks,
we search for p used in nucleus (or top-p) sampling [7] out
of {0.90, 0.95, 0.99, 1.0}. We train the models for 50 and
20 epochs in Rico and PubLayNet, respectively.
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Rico PubLayNet

LayoutVAE [8] (C→S+P) 13.2 13.0
NDN-none [11] (C→S+P) 21.8 21.8

LayoutGAN++ [9] (C→S+P) 12.9 12.9
LayoutVAE [8] (C+S→P) 14.7 14.5
NDN-none [11] (C+S→P) 14.8 14.8

LayoutGAN++ [9] (C+S→P) 13.0 13.0
LayoutTrans [5] 12.7 12.7

LayoutTrans-fixed [5] 12.7 12.7
MaskGIT* [1] 12.7 12.7

BLT [10] 12.7 12.7
RUITE [17] 12.7 12.7
BART [12] 12.8 12.8

VQDiffusion* [4] 12.4 12.4
LayoutDM 12.4 12.4

Table 1. The number of parameters [M] used for each model.

We attempt a grid search for additional hyper-parameters
in the refinement task. The ranges of possible values are
the following: the distance margin m in {0.1, 0.2} and the
weighting term λπ in {1.0, 2.0, 3.0, 4.0, 5.0}.

A.4. Evaluation

In unconditional generation, the model generates 1,000
samples from the random seed. In conditional generation,
the test set of each dataset is used to make a partial input for
conditional generation and the model generates one sample
per each data in the test set.

B. Additional Results

B.1. Ablation Study

State space Continuous state space diffusion models have
gained much attention compared to discrete state space
models. Recently, Li et al. [15] propose DiffusionLM that
adapts the continuous models to handle discrete text gener-
ation. DiffusionLM introduces an embedding and rounding
step to bridge the continuous and discrete state spaces. We
train DiffusionLM (with 12.6M parameters) and show the
results in Tab. 2. We show the results of DiffusionLM with
embedding dimensions d = 16 because it works best out
of {16, 64, 128} in Rico [2] dataset. Although We tried dif-
ferent samplers (DDPM [6] and DDIM [18]) and training
timesteps, DiffusionLM is still far behind the discrete state
space models in layout generation as shown in Tab. 2.

Refinement The logit adjustment proposed in the main
manuscript has some choices for injecting positional prior.
Without loss of generality, we describe a constraint that im-
poses the x-coordinate estimate of i-th element close to the

State #steps Sampler FID ↓
LayoutDM dis. 100 - 6.65

VQDiffusion* [4] dis. 100 - 7.46

DiffusionLM [15]

con. 100 DDIM 34.5
con. 100 DDPM 24.8
con. 1000 DDIM 33.8
con. 1000 DDPM 22.8

Table 2. Ablation study results on the choice of state spaces: dis-
crete (dis.) and continuous (con.), in the unconditional generation
task of Rico [2] dataset. Top two results are highlighted in bold
and underline, respectively.

FID ↓ Max. ↑ Sim ↑
Default 2.77 0.370 0.205

Gaussian 5.82 0.330 0.188
Negation 3.78 0.276 0.169

Table 3. Ablation study results on the choice of logit adjustment
methods in the refinement task. Top two results are highlighted in
bold and underline, respectively.

noisy continuous observation x̂i. We denote a sliced vec-
tor of the prior term π(zt−1) that corresponds to the x-
coordinate of i-th element as πi

x ∈ RK .
• Gaussian: j-th token is more likely to be sampled when
loc(j) is closer to x̂i. The prior is defined by:[

πi
x

]
j
={

(loc (j)− x̂i)
2 if |loc(j)− x̂i| < m and j ∈ X

0 otherwise,
(3)

The ranges of possible values are similar to our method
used in the main manuscript (Default).

• Negation: j-th token is never sampled when loc(j) is far
away from x̂i. The prior is defined by:

[
πi
x

]
j
=

{
0 if |loc(j)− x̂i| < m and j ∈ X

−∞ otherwise.
(4)

The ranges of possible values are the following: the dis-
tance margin m in {0.2, 0.4, 0.6, 0.7, 0.8, 0.9}.
We show the quantitative evaluation results in Tab. 3. We

can see that Default outperforms other possible choices by
a large margin.

B.2. Speed-Quality Trade-off

We show more speed-quality trade-off curves in Fig. 1.
We perform generation with a batch size of 64 and report the
average runtime to generate a single layout for all the mod-
els. Lightly colored regions around the line plots, such as



the one in BLT for C→S+P in Rico represent the standard
deviation of three trials for each model, though the devia-
tions are too small to see in most cases.

B.3. More Results

We show more results compared with task-specific base-
lines in C→S+P (Fig. 2), C+S→P (Fig. 4), unconditional
generation (Fig. 6), the refinement task (Fig. 8) for Pub-
LayNet. Typical failure cases are frequent overlap between
elements (often in BLT), unnecessarily broad blank space
(often in LayoutTrans.), and lack of diversity. We show
more results in C→S+P (Fig. 3), C+S→P (Fig. 5), uncon-
ditional generation (Fig. 7), the refinement task (Fig. 9) for
Rico. Rico is more difficult to generate since the number of
categories is large and elements are less aligned compared
to PubLayNet.

B.4. Diversity-Fidelity Trade-off

We introduce density and coverage metrics by [16] to an-
alyze the results from a different viewpoint. Density mea-
sures fidelity; i.e., how closely generated samples resem-
ble real ones. Coverage measures diversity; i.e., whether
generated samples cover the full variability of the real
samples. We plot the diversity and fidelity of iterative
refinement-based models in Fig. 10 as we increase the
number of timesteps for the iterative prediction. Discrete
diffusion-based models usually have higher coverage scores
and lower density scores. We conjecture that the cover-
age difference comes from the inference decoding strategy.
BLT [10] and MaskGIT∗ [1] fix high-confident predictions
and re-initialize lower-confident fields by [MASK] for the
next step that leads to higher fidelity. In contrast, discrete
diffusion-based models randomly corrupt the predictions
and result in higher diversity.

B.5. Alignment and Overlap

We additionally show the metrics reported in many pre-
vious works: Alignment and Overlap. Note that these met-
rics only capture the fidelity of generated layouts. There are
a few variants for both Alignment [9, 11, 13, 14] and Over-
lap [9,13,14]. We employ the definition in [9]. We scale the
values of Alignment by 100× for visibility. For reference,
we show Alignment and Overlap computed in a validation
set as Real data. The lowest score in Alignment or Overlap
does not always mean the best performance for a model,
but a model closest to Real data is the best model. We
show the result in Fig. 11. In the fixed-length generation i.e.
C→S+P and C+S→P, LayoutDM performs almost compa-
rably to VQDiffusion* [4] and BART [12], and better than
the other models. In the variable-length generation i.e. the
completion task and unconditional generation, autoregres-
sive models, such as BART [12] and LayoutTrans. [5], are
moderately better than LayoutDM. This result is reasonable

since these models predict the fields one by one. Diffusion-
based models, such as LayoutDM and VQDiffusion∗, are
better than BLT and MaskGIT∗. We believe this is because
diffusion models avoid the error accumulation in iterative
prediction according to [4].
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Figure 1. Speed-quality trade-off of different models.
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Figure 1. (cont.) Speed-quality trade-off of different models.
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Figure 2. Comparison of conditional generation in C→S+P for PubLayNet. We obtain three samples from each model to demonstrate the
diversity.
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Figure 3. Comparison of conditional generation in C→S+P for Rico. We obtain three samples from each model to demonstrate the
diversity.
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Figure 4. Comparison of conditional generation in C+S→P for PubLayNet. We obtain three samples from each model to demonstrate the
diversity. Note that the size condition of each element is not shown for limited space. Please refer to Real Data for the size.
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Figure 5. Comparison of conditional generation in C+S→P for Rico. We obtain three samples from each model to demonstrate the
diversity. Note that the size condition of each element is not shown for limited space. Please refer to Real Data for the size.



Real Data Layout-
Trans. [5] MaskGIT∗ [1] BLT [10] BART [12] VQDiffusion∗ [4] LayoutDM

Figure 6. Comparison of unconditional generation for PubLayNet. We obtain five samples from each model to demonstrate the diversity.



Real Data Layout-
Trans. [5] MaskGIT∗ [1] BLT [10] BART [12] VQDiffusion∗ [4] LayoutDM

Figure 7. Comparison of unconditional generation for Rico. We obtain five samples from each model to demonstrate the diversity.



Input RUITE [17] LayoutDM Ground Truth

Figure 8. Comparison of the refinement task for PubLayNet. We obtain three samples from LayouytDM to demonstrate the diversity.

Input RUITE [17] LayoutDM Ground Truth

Figure 9. Comparison of the refinement task for Rico. We obtain three samples from LayouytDM to demonstrate the diversity.
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Figure 10. Density-coverage trade-off of different models.
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Figure 10. (cont.) Density-coverage trade-off of different models.
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Figure 11. Alignment and overlap of different models.
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Figure 11. (cont.) Alignment and overlap of different models.
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