
Supplementary Material
Towards Flexible Multi-modal Document Models

We describe more experimental details and results that
are omitted due to the limited space in the main paper. Note
that images are resized to meet the size limit. We will plan
to provide high-resolution results in our project page.

A. Implementation details

A.1. Dataset

We show the details of multi-modal attributes used in
our experiments for Rico and Crello datasets in Tab. 1. The
number of elements for Rico and Crello is shown in Fig. 1a
and Fig. 1b, respectively. The average number of elements
in Rico is 16.2, which is much higher compared to the
benchmark setup in the literature [4] (5.9 on average, 9 at
maximum). The average number of elements in Crello is
9.7. However, design tasks in Crello dataset are also very
challenging since the model should consider complex multi-
modal relations such as images and texts. Crello dataset in-
volves a large number of decorative elements, which also
makes modeling hard.

A.2. Quantitative Evaluation

We describe implementation details for adapting existing
task-specific models to our multi-task, multi-attribute, and
arbitrary masking settings. Note that a learning schedule is
similar in all the methods for a fair comparison.

A.2.1 LayoutGAN++

We follow the implementation described in Layout-
GAN++ [4] and implement discriminator and auxiliary de-
coder modules. The generator part is precisely the same as
our model. Training GANs on discrete data is non-trivial,
as discussed in RelGAN [8]. It involves non-differentiable
sampling operations on the multinomial distribution of the
generator output. Following RelGAN, we use Straight
Through Gumbel-Softmax trick [2] to enable the differen-
tiable optimization. We set the number of Transformer lay-
ers to 4 and the size of their hidden states in each module to
256.

A.2.2 CVAE

Following LayoutVAE [3] and NDN [5], we implement a
CVAE [10] variant for the multi-task, multi-attribute, and
arbitrary masking settings. It predicts elements in an auto-
regressive manner. At iteration j to predict j-th element,
the condition cj is modeled as:

tj =
(
{x∗

i=1:j−1}, {xi=j:S}
)
, (1)

cj = gupdate(tj), (2)

where xj and x∗
j indicate a set of fields for the i-th element

of the input and ground truth data, respectively. For gupdate,
we first use our Encoder f enc,k to conduct element-wise ag-
gregation and use our Transformer Blocks f trans to obtain
contextual information on each element for CVAE. We use
an independent VAE module for each attribute:

zk = genc,k(xk
j , cj), (3)

xk
j = gdec,k(zk, cj), (4)

where genc,k and gdec,k represent an encoder and a decoder
consisting of fully connected layers for the k-th attribute.
For genc,k and gdec,k, we follow NDN [5]. We train the
model with conventional VAE loss consisting of a recon-
struction loss Lrecon and a KL loss LKL:

Lrecon =
∑

(j,k)∈M

lk(x̂k
j , x

∗k
j), (5)

LKL =
∑

(j,k)∈M

E
[
DKL(p(z

k|cj , xk
j)||p(zk|cj))

]
(6)

L = Lrecon + λLKL (7)

, where lk is the loss function for attribute k and M is a set
of tuples indicating the indices for masked tokens [MASK]
in X and λ is a hyper-parameter. The model is trained with
teacher forcing. At the test time, the model will use the
estimated fields from previous steps (i.e., x̂ instead of x∗ in
Eq. (1)). The latent vector z is sampled from a conditional
prior distribution p(z|ck), where p is a prior encoder.

0 20 40
#elements

0

1000

2000

#d
oc

um
en

ts

(a) Rico dataset [1]

0 20 40
#elements

0

500

1000

1500

#d
oc

um
en

ts

(b) Crello dataset [11]

Figure 1. The number of elements in vector graphic document datasets.

Table 1. Details of attributes for each element in vector graphic document used in our experiments. C and N is short for categorical and
numerical, respectively.

Dataset Group Name C/N Size Dim Description

Crello

TYPE Type C 6 1 Element type, such as vector shape, image, or text.
POS Position C 64 2 Left and top position each quantized to 64 bins.
POS Size C 64 2 Width and height each quantized to 64 bins.
ATTR Opacity C 8 1 Opacity quantized to 8 bins.
ATTR Color C 16 3 RGB color each quantized to 16 bins (Only: text and svg fill)
ATTR Font C 35 1 Font used to render texts. (Only: text)
IMG Image N 1 768 Image feature extracted by pre-trained CLIP [9]. (Only: image)
TXT Text N 1 768 Text feature extracted by pre-trained CLIP [9]. (Only: text)

Rico

TYPE Type C 13 1 Element type, such as text, image, icon, etc.
POS Position C 64 2 Left and top position each quantized to 64 bins.
POS Size C 64 2 Width and height each quantized to 64 bins.
ATTR Icon C 59 1 Icon type, such as arrow, close, home.
ATTR Button C 25 1 Text on button, such as login or back.
ATTR Clickable C 2 1 Binary flag indicating if the element is clickable.

A.3. Comparison with Task-specific Baselines

A.3.1 Layout Generation

Although our model primarily aims at comprehensive de-
sign tasks, we can apply FlexDM to the conditional layout
generation [4, 5, 7] where we only have labels as the inputs.
We perform experiments on three major datasets, Rico [1],
PubLaynet [13], and Magazine [12], and their performance
in terms of the FID score, maximum IoU, alignment, and
overlap metrics is summarized in Tab. 2. Since each metric
has some variations, we follow [4] for details. We can see
that our model is comparable to the existing layout genera-
tion models.

A.3.2 Single Text Box Placement

We use Crello dataset [11] for comparison but carefully se-
lect the attributes for a fair comparison. We use Type,
Left, Width, Right, Height, Text, Image, and
Aspect Ratio. Aspect Ratio is automatically com-
puted by Height/Width. We mask the position and size
attributes for the target text element and predict them by
our masking model. For applying Li et al. [6]’s model, we
render all the elements except the target one to a single im-
age and use their model. Color, Font, and Opacity
attributes are not used.

A.4. Qualitative Evaluation

We demonstrate that our framework generalizes to han-
dle various samples in many design tasks. The results of

Table 2. Quantitative comparison of conditional layout generation. The values of Alignment and Overlap are multiplied by 100× for
visibility. For reference, the FID and Max. IoU computed between the validation and test data, and the Alignment and Overlap computed
with the test data are shown as real data.

Dataset Rico PubLayNet Magazine

Model FID ↓ Max. IoU ↑ Align. ↓ Overlap ↓ FID ↓ Max. IoU ↑ Align. ↓ Overlap ↓ FID ↓ Max. IoU ↑ Align. ↓ Overlap ↓

LayoutGAN-W [7]162.75±0.28 0.30±0.00 0.71±0.00 174.11±0.22 195.38±0.46 0.21±0.00 1.21±0.01 138.77±0.21 159.20±0.87 0.12±0.00 0.74±0.02 188.77±0.93

LayoutGAN-R [7] 52.01±0.62 0.24±0.00 1.13±0.04 69.37±0.66 100.24±0.61 0.24±0.00 0.82±0.01 45.64±0.32 100.66±0.35 0.16±0.00 1.90±0.02 111.85±1.44

NDN-none [5] 13.76±0.28 0.35±0.00 0.56±0.03 54.75±0.29 35.67±0.35 0.31±0.00 0.35±0.01 16.50±0.29 23.27±0.90 0.22±0.00 1.05±0.03 30.31±0.77

LayoutGAN++ [4] 14.43±0.13 0.36±0.00 0.60±0.12 59.85±0.59 20.48±0.29 0.36±0.00 0.19±0.00 22.80±0.32 13.35±0.41 0.26±0.00 0.80±0.02 32.40±0.89

Ours 26.02±0.11 0.42±0.00 0.12±0.00 84.11±0.34 60.70±0.37 0.25±0.00 0.11±0.00 16.85±0.13 33.84±0.69 0.22±0.00 0.66±0.01 67.70±0.49

Real data 4.47 0.65 0.26 50.58 9.54 0.53 0.04 0.22 12.13 0.35 0.43 25.64

our model (Ours-EXP-FT) in Crello dataset are shown in
Fig. 2 (ATTR), Fig. 5 (IMG), Fig. 8 (TXT), Fig. 11 (POS),
and Fig. 14 (ELEM). We list typical failure cases for each
task in Fig. 3 (ATTR), Fig. 6 (IMG), Fig. 9 (TXT), Fig. 12
(POS), and Fig. 15 (ELEM). We also show results on ran-
domly sampled examples for each task in Fig. 4 (ATTR),
Fig. 7 (IMG), Fig. 10 (TXT), Fig. 13 (POS), and Fig. 16
(ELEM). We can see that the design tasks are very chal-
lenging but our model constitutes a strong baseline. Note
that we retrieve some rare element properties that affect the
final appearance from ground truth for visualization, such
as rotation and text alignment info inside the element (e.g.,
center). Modeling such very fine-grained features would be
a promising direction for a fully controllable generation.

References
[1] Biplab Deka, Zifeng Huang, Chad Franzen, Joshua Hib-

schman, Daniel Afergan, Yang Li, Jeffrey Nichols, and Ran-
jitha Kumar. Rico: A mobile app dataset for building data-
driven design applications. In UIST, 2017. 2

[2] Eric Jang, Shixiang Gu, and Ben Poole. Categorical repa-
rameterization with gumbel-softmax. ICLR, 2017. 1

[3] Akash Abdu Jyothi, Thibaut Durand, Jiawei He, Leonid Si-
gal, and Greg Mori. LayoutVAE: Stochastic scene layout
generation from a label set. In CVPR, 2019. 1

[4] Kotaro Kikuchi, Edgar Simo-Serra, Mayu Otani, and Kota
Yamaguchi. Constrained graphic layout generation via latent
optimization. In ACM MM, 2021. 1, 2, 3

[5] Hsin-Ying Lee, Weilong Yang, Lu Jiang, Madison Le, Ir-
fan Essa, Haifeng Gong, and Ming-Hsuan Yang. Neural de-
sign network: Graphic layout generation with constraints. In
ECCV, 2020. 1, 2, 3

[6] Chenhui Li, Peiying Zhang, and Changbo Wang. Harmo-
nious textual layout generation over natural images via deep
aesthetics learning. IEEE TMM, 2021. 2

[7] Jianan Li, Jimei Yang, Aaron Hertzmann, Jianming Zhang,
and Tingfa Xu. LayoutGAN: Generating graphic layouts
with wireframe discriminators. In ICLR, 2019. 2, 3

[8] Weili Nie, Nina Narodytska, and Ankit Patel. Relgan: Rela-
tional generative adversarial networks for text generation. In
ICLR, 2019. 1

[9] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learn-
ing transferable visual models from natural language super-
vision. In ICML, 2021. 2

[10] Kihyuk Sohn, Honglak Lee, and Xinchen Yan. Learning
structured output representation using deep conditional gen-
erative models. 2015. 1

[11] Kota Yamaguchi. CanvasVAE: Learning to generate vector
graphics documents. In ICCV, 2021. 2

[12] Xinru Zheng, Xiaotian Qiao, Ying Cao, and Rynson WH
Lau. Content-aware generative modeling of graphic design
layouts. ACM TOG, 38(4), 2019. 2

[13] Xu Zhong, Jianbin Tang, and Antonio Jimeno Yepes. Pub-
LayNet: largest dataset ever for document layout analysis. In
ICDAR, 2019. 2

Figure 2. Success cases in ATTR prediction. We visualize the target fields assigned [MASK] using fixed default values (e.g., black for text
color and gray for solid fill). Best viewed with zoom and color.

Input Prediction Ground Truth

Figure 3. Failure cases in ATTR prediction. We visualize the target fields assigned [MASK] using fixed default values (e.g., black for text
color and gray for solid fill). First row: the model uses too many colors. Second row: text is invisible due to very weak contrast between
the text and solid fill color. Third and fourth rows: the model does not pick appropriate fonts. Best viewed with zoom and color.

Input Prediction Ground Truth

Figure 4. Randomly sampled examples in ATTR prediction. We visualize the target fields assigned [MASK] using fixed default values
(e.g., black for text color and gray for solid fill). Best viewed with zoom and color.

Input Prediction Ground Truth

Figure 5. Success cases in IMG prediction. We visualize the target fields assigned [MASK] using fixed default values (e.g., gray for
image). Best viewed with zoom and color.

Input Prediction Ground Truth

Figure 6. Failure cases in IMG prediction. We visualize the target fields assigned [MASK] using fixed default values (e.g., gray for image).
First and second rows: the image does not match the texts. Third row: the model failed to infer symmetry. Fourth and fifth rows: predicting
decorative elements are very challenging. Best viewed with zoom and color.

Input Prediction Ground Truth

Figure 7. Randomly sampled examples in IMG prediction. We visualize the target fields assigned [MASK] using fixed default values (e.g.,
gray for image). Best viewed with zoom and color.

Input Prediction Ground Truth

Figure 8. Success cases in TXT prediction. We visualize the target fields assigned [MASK] using fixed default values (e.g., repeating
’TEXT’ for text). Best viewed with zoom and color.

Input Prediction Ground Truth

Figure 9. Failure cases in TXT prediction. We visualize the target fields assigned [MASK] using fixed default values (e.g., repeating
’TEXT’ for text). First row: the texts describe the background image a bit, but it does not match the ground truth. Second row: the model
is unable to capture the context from the background images and decoration. Third row: when the model is not sure, it tends to predict
features of some common words (e.g., ’than just a’, ’this is’, ’sale’, . . .). Fourth row: infering complex messages behind the scene is
difficult. Best viewed with zoom and color.

Input Prediction Ground Truth

Figure 10. Randomly sampled examples in TXT prediction. We visualize the target fields assigned [MASK] using fixed default values
(e.g., repeating ’TEXT’ for text). Best viewed with zoom and color.

Input Prediction Ground Truth

Figure 11. Success cases in POS prediction. The correspondence between the color and type of the element in the layout is as follows:
green = vector shape, magenta = image, purple = text, yellow = solid fill. Best viewed with zoom and color.

Prediction (Layout) Prediction (Image) GT (Layout) GT (Image)

Figure 12. Failure cases in POS prediction. First row: text reading order is essential but the model fails to infer the order. Second row:
the text is highly overlaping with the background image. Third and fourth rows: placing a large number of objects is very challenging.
Fifth row: the model cannot capture view hierarchy. Sixth row: arranging decorative elements is difficult. The correspondence between
the color and type of the element in the layout is as follows: green = vector shape, magenta = image, purple = text, yellow = solid fill. Best
viewed with zoom and color.

Prediction (Layout) Prediction (Image) GT (Layout) GT (Image)

Figure 13. Randomly sampled examples in POS prediction. The correspondence between the color and type of the element in the layout is
as follows: green = vector shape, magenta = image, purple = text, yellow = solid fill. Best viewed with zoom and color.

Prediction (Layout) Prediction (Image) GT (Layout) GT (Image)

Figure 14. Success cases in ELEM filling. Best viewed with zoom and color.

Input Prediction Ground Truth

Figure 15. Failure cases in ELEM filling. First row: the model tries to place a vector shape behind texts, but the size is incorrect. Second
row: the model tries to generate the main image but fails. Third and fourth rows: the model is unsure and retrieves some common words.
Best viewed with zoom and color.

Input Prediction Ground Truth

Figure 16. Randomly sampled examples in ELEM filling. Best viewed with zoom and color.

Input Prediction Ground Truth

	. Implementation details
	. Dataset
	. Quantitative Evaluation
	LayoutGAN++
	CVAE

	. Comparison with Task-specific Baselines
	Layout Generation
	Single Text Box Placement

	. Qualitative Evaluation

