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A. Additional Formulation
In this section, we will present some additional formula-
tions used in our model that do not affect the results pre-
sented in the paper. Notwithstanding that our proposed
EIPE works for any polyhedron (which is the reason why it
can be used under the mip-NeRF 360 [2] architecture with-
out further treatment), we also present an alternative formu-
lation of the EIPE for the particular case of strictly square
pyramids.

A.1. Indeterminate cases for the EIPE

By simplifying Eq. (22) we obtain:

σx,τ =

(xτ,2 − xτ,1) cos(2
lxτ,0)

+(xτ,0 − xτ,2) cos(2
lxτ,1)

+(xτ,1 − xτ,0) cos(2
lxτ,2)

22l(xτ,1 − xτ,0)(xτ,2 − xτ,0)(xτ,2 − xτ,1)
. (29)

From Eq. (29) we observe that an indetermination occurs
for the case of two points in the triangle τ sharing the same
coordinate, such that xτ,i = xτ,j , i ̸= j. In order to get a
valid value for these cases, we get the limit when those two
coordinates approach. We can write Eq. (29) as:

σx,τ =
f(xτ,0, xτ,1, xτ,2)

22lg(xτ,0, xτ,1, xτ,2)
. (30)

Then, we obtain the value for the case of xτ,0 = xτ,1 using
l’Hopital’s rule:

lim
xτ,0→xτ,1

f(xτ,0, xτ,1, xτ,2)

22lg(xτ,0, xτ,1, xτ,2)
= (31)

lim
xτ,0→xτ,1

∂
∂xτ,0

f(xτ,0, xτ,1, xτ,2)

22l ∂
∂xτ,0

g(xτ,0, xτ,1, xτ,2)
= (32)

lim
xτ,0→xτ,1

(
−2l(xτ,2 − xτ,1) sin(2

lxτ,0)
+ cos(2lxτ,1)− cos(2lxτ,2)

)
22l(xτ,2 − xτ,1)(2xτ,0 − xτ,1 − xτ,2)

= (33)

2l(xτ,2 − xτ,1) sin(2
lxτ,1)− cos(2lxτ,1) + cos(2lxτ,2)

22l(xτ,2 − xτ,1)2
.

(34)
Similarly, from Eq. (33), we evaluate the case xτ,0 = xτ,2:

−2l(xτ,2 − xτ,1) sin(2
lxτ,2) + cos(2lxτ,1)− cos(2lxτ,2)

22l(xτ,2 − xτ,1)2
.

(35)
For the case when xτ,1 = xτ,2, we differentiate with respect
to xτ,1 to obtain the corresponding value:

lim
xτ,1→xτ,2

f(xτ,0, xτ,1, xτ,2)

22lg(xτ,0, xτ,1, xτ,2)
= (36)

lim
xτ,1→xτ,2

(
− cos(2lxτ,0) + cos(2lxτ,2)
+2l(xτ,2 − xτ,0) sin(2

lxτ,1)

)
22l(xτ,2 − xτ,0)(xτ,0 + xτ,2 − 2xτ,1)

= (37)

−2l(xτ,2 − xτ,0) sin(2
lxτ,1) + cos(2lxτ,0)− cos(2lxτ,2)

22l(xτ,2 − xτ,0)2
.

(38)
Finally, when xτ,0 = xτ,1 = xτ,2, we use again the
l’Hopital’s rule on Eq. (33) and differentiate again with re-
spect to xτ,0 to obtain:

lim
xτ,0→xτ,1→xτ,2

σx,τ = −1

2
cos(2lxτ,0) . (39)

Using the same approach, we can find the following expres-
sions for ξx,τ (Eq. (27)):

lim
xτ,0→xτ,1

ξx,τ =

(
2l(xτ,2 − xτ,1) cos(2

lxτ,1)
+ sin(2lxτ,1)− sin(2lxτ,2)

)
22l(xτ,2 − xτ,1)2

(40)

lim
xτ,0→xτ,2

ξx,τ =

(
−2l(xτ,2 − xτ,1) cos(2

lxτ,2)
− sin(2lxτ,1) + sin(2lxτ,2)

)
22l(xτ,2 − xτ,1)2

(41)

lim
xτ,1→xτ,2

ξx,τ =

(
−2l(xτ,2 − xτ,0) cos(2

lxτ,2)
− sin(2lxτ,0) + sin(2lxτ,2)

)
22l(xτ,2 − xτ,0)2

(42)
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Figure 7. Parameterization of the square pyramid using the pixel
width ω.

lim
xτ,0→xτ,1→xτ,2

ξx,τ =
1

2
sin(2lxτ,0) . (43)

Similar expressions can be obtained for the y and z coordi-
nates.

A.2. Alternative EIPE for Squared Pyramids

As mentioned earlier, our EIPE in Eq. (28) can be used for
any shape whose vertices are known. However, the com-
putational cost increases if the 3D shape is complex since a
larger number of triangular faces will need to be processed.
For more efficient methods, we can focus our analysis on
specific shapes. Particular to our scenario, we can obtain
an alternative EIPE exclusively for a square pyramid (note
that this will not be the case for the contraction function in
mip-NeRF 360) with a known camera pose [R|o] and pixel
width ω (similar to ṙ in mip-NeRF). From Fig. 7, we calcu-
late the volume of the frustum as

V =

ˆ ti+1

ti

ˆ ωz/2

−ωz/2

ˆ ωz/2

−ωz/2

dx′dy′dz′ (44)

V =
ω2

3

(
t3i+1 − t3i

)
. (45)

The numerator in Eq. (6) for the x coordinate can be ob-
tained in the same way:

Ix =

ˆ ti+1

ti

ˆ ωz/2

−ωz/2

ˆ ωz/2

−ωz/2

sin(2lx)dx′dy′dz′ . (46)

Since the camera pose is known, we can express x as

x = r11x
′ + r12y

′ + r13z
′ + o1 , (47)

where rij is an element of the rotation matrix R and o1 is
the first element of o. Substituting Eq. (47) in Eq. (46) (and

omitting the integration limits for clarity):

Ix =

˚
sin(2l(r11x

′ + r12y
′ + r13z

′ + o1))dx
′dy′dz′ .

(48)
The solution to the integral in Eq. (48) is then:

Ix =
1

23lr11r12

[
C1

ζ1
− C2

ζ2
− C3

ζ3
+

C4

ζ4

]
, (49)

Cj = cos
(
2l(ti+1ζj + o1)

)
− cos

(
2l(tiζj + o1)

)
, (50)

ζj = η⊤
j

r11r12
r13

 , (51)

η1 =

ω
2
ω
2
1

,η2 =

−ω
2

ω
2
1

,η3 =

 ω
2

−ω
2
1

,η4 =

−ω
2

−ω
2
1

 .

(52)

Similarly to the EIPE in Eq. (28), an indeterminate value
arises in Eq. (49) for r11 = 0 and r12 = 0. For these cases,
l’Hopital’s rule can be used as in Sec. A.1 or Eq. (48) can
be solved by substituting r11 = 0 and r12 = 0. We omit
these calculations for brevity.

B. Numerical Analysis between IPE and EIPE
We compare the exact value of the EIPE with the approx-
imation in Eq. (7) used by mip-NeRF [1]. In Fig. 8a we
contrast the value of the EIPE vs the IPE for frustums of
length δi = 0.02 at different positions along the ray d and
at different positional encoding frequencies L. The values
of d, o and R correspond to a random pixel of a random im-
age of the blender dataset. It is seen that the approximation
is precise for frustums that are near the camera (small µt),
but it degrades the further it gets. It is also observed that
this effect grows faster for larger values of L. This trend is
more noticeable in the plot of the error between the EIPE
and IPE (Fig. 8b), where the magnitude of the error is a pe-
riodic function approximately bounded by two lines whose
pendant seems to grow proportional with L. Furthermore,
it is observed that the frequency of the error is also pro-
portional to L. Figs. 8c and 8d show a similar analysis for
small values of µt and δi = 5 × 10−4, which correspond
to small frustums. In these instances, it is observed that nu-
merical errors occur, which is consistent with the analysis
of the Impact of Numerical Underflow in Sec. 5. A similar
analysis for a fixed value of µt = 3 and varying δi is shown
in Figs. 8e and 8f. Here, a more drastic error is seen when
δi increases, which is consistent with the observation made
in [2] that the IPE does not approximate well for very elon-
gated Gaussians. Additionally, rapid changes in the IPE are
observed for small variations in the length of the frustum
(see Fig. 8e IPE L = 3 and IPE L = 4), which might not
be desired. On the other hand, our EIPE is more robust to
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Figure 8. Numerical comparison between the IPE and our EIPE. (a) EIPE vs IPE for different values of µt and (b) their difference. (c)
EIPE vs IPE with respect to the length of the frustum δi and (d) their difference.

these elongations, meaning that it could be a more reliable
parameterization for distant objects.

Despite the increasing error in the approximation of the
IPE for larger values of L, this effect gets mitigated by the
nature of the IPE itself, which gives more importance to
the components of the positional encoding with smaller fre-
quencies. However, in scenarios with distant backgrounds
where more elongated frustum arise, such as in the bicycle
scene, Exact-NeRF seems to perform better (Sec. 5). Given
that the scenes in the blender and mip-NeRF 360 datasets
are composed of one central object only, it is difficult to
evaluate the performance of the IPE and EIPE formulations
for distant objects or scenarios with several objects.

C. Additional Results on the Blender Dataset

We present more qualitative comparisons in Fig. 9 between
different scenes of the blender dataset. The reconstructions
of both mip-NeRF and Exact-NeRF are almost identical,
but a few differences can be noted, e.g., the apron of the
chair and the holes in the lego scene are slightly sharper in
our reconstruction; the details in the cymbals of the drum
are more similar with the ground truth; the reconstruction
of the water in the ship scene is more accurate with our
method. Besides these minimal differences, our exploratory
work demonstrates that analytical solutions to a volumet-
ric positional encoding exist if the shape of the frustum is
changed.



Figure 9. Additional results of Exact-NeRF for the blender dataset.



D. Limitation of Existing Metrics
Following the approach from previous NeRF research, we
report PSNR, SSIM and LPIPS as our evaluation metrics.
PSNR and SSIM are two of the first evaluation metrics for
image reconstruction. Traditionally, PSNR (based on the
MSE metric) has been used to assess the quality of lossy
compression algorithms. Since the PSNR is obtained via
the pixel-wise absolute error, it cannot measure the struc-
tural and/or perceptual similarity between the reconstructed
and reference images. SSIM was proposed as an alternative
metric since it quantifies the relation between the pixels and
their neighbourhood (i.e., the structural information). Sev-
eral works have focused on the weakness of these metrics
[S3–S7], where the main criticism is that images subject to
different compression artifacts and distortion effects (such
as additive Gaussian blurring) exhibit similar PSNR and
SSIM values. Additional work [S2] has shown analytical
and experimental relations between both metrics, meaning
that they are not independent. In order to overcome these
effects, recent image quality assessment methods have been
proposed. Ding et al. [S1] have carried out a comprehensive
comparison between different metrics, where deep neural
networks-based metrics such as LPIPS [33] and DISTS [7]
showed to be the most reliable quality metrics for perceptual
similarity. These metrics compare two images by measuring
the distance of their feature maps from a pretrained neural
network. These results motivated us to include the DISTS
metric in our experiments (Tabs. 1 and 2). Our method ob-
tains a better performance in the LPIPS and DISTS metrics,
thus improving the perceptual quality.
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