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1. Theoretical Results
In this section, we present details on the theoretical re-

sults discussed in Section-5 of the main paper. As noted by
Shen et al. [16], the weights learned by a patch-wise Convo-
lutional Neural Network are a linear combination of the two
types of features (described in Section-5 of the main paper)
present in the dataset. Let the threshold Kcut denote the
number of robust features learned by the model. We have,

w =
∑

k≤Kcut

vk +
∑

k>Kcut

y(k)ϵ(k) (1)

On averaging of the weights of m models we get:

w =
1

m

m∑
j=1

Kcutj∑
k=1

vkj +
∑

k>Kcutj

y
(k)
j ϵ

(k)
j

 (2)

We now analyze the convergence of this weight averaged
neural network shown in Eq.2. Let L represent the logistic
loss of the model, F denote the function learned by the neu-
ral network, and wc denote its weights across C channels
indexed using c. Further, let y(i) represent the ground truth
label of sample xi ∀ i ∈ [1, n], where n denotes the num-
ber of samples in the train set. The weights w1, w2, .., wC

are initialized as wc ∼ N
(
0, σ2

0Id
)
∀ c ∈ C. We assume

that the weights learned by the model at any time stamp t
are a linear combination of the linear functions f , g and h
corresponding to feature patches, noisy patches and model
initialization respectively, as shown below:

wt
c = f(v1, v2, . . . vK) + g(ϵ(1), ϵ(2), . . . ϵ(n)) + h(ϵ′) (3)

where ϵ′ is the random noise sampled for the initialization
of the model. Since the term h(ϵ′) does not play a role in the
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convergence of the model, we ignore this term for the pur-
pose of analysis. For simplicity, we assume that f and g rep-
resent summations over their respective arguments. Thus,
the weights at any time t can be represented as

wt
c =

Kt
cut∑

l=1

αt
lvl +

∑
l>Kt

cut

y(l)ϵ(l) (4)

where Kt
cut and αt

l are a functions of time t. At conver-
gence, αi = 1 ∀i ∈ [1,Kcut] and αi = 0 otherwise.

We now analyze the learning dynamics while training
the model. Owing to the gradient descent based updates of
model weights over time, the derivative of overall loss L
w.r.t. the weights of a given channel wc can be written as,

d

dt
wc = − d

dwc
L

= − 1

n

n∑
i=1

y(i)L
′
(y(i), F (w, x(i)))∇wc

F (w, x(i)) (5)

Since L is a logistic loss, we have −L
′
(o(1)) = 0.5+ o(1),

where o(1) represents terms independent of the variable
w. As discussed in Section-5 of the main paper, the func-
tion learned by the neural network is given by F (w, x) =
C∑

c=1

2∑
p=1

ϕ(wc, xp), where ϕ is the activation function de-

fined as follows [16]:

• for |z| ≤ 1; ϕ(z) = sign(z) 1q |z|
q

• for z ≥ 1; ϕ(z) = z − q−1
q

• for z ≤ −1; ϕ(z) = z + q−1
q

Based on this, Eq.5 can be written as

d

dt
wc ≈

1 + o(1)

2n

n∑
i=1

2∑
p=1

ϕ
′
(|wcx

(i)
p |)y(i)x(i)

p (6)
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Considering the two types of patches present in the image
(feature and noisy patch), we have:

d

dt
wc ≈

1 + o(1)

2n

n∑
i=1

ϕ
′
(|wcvd(i) |)vd(i)

+
1 + o(1)

2n

n∑
i=1

ϕ
′
(|wcϵ

(i)|)y(i)ϵ(i) (7)

where vd(i) represents the feature patch in the image

x(i), 1+o(1)
2n

n∑
i=1

ϕ
′
(|wcvd(i) |)vd(i) represents the gradients

on feature patches, and 1+o(1)
2n

n∑
i=1

ϕ
′
(|wcϵ

(i)|)y(i)ϵ(i) rep-

resents the gradients on noisy patches of the image.
To improve the clarity of the proofs, we restate and proof

lemma-1 of [16] in the following two lemmas presented be-
low:
Lemma 1 Let X ∼ N(0, σ2

xIm) and Y ∼ N(0, σ2
yIm) be

m dimensional gaussian random variables, then XTY =
O(

√
mσxσy)

Proof. Given any two random variables x ∼ N(µ1, σ
2
1) and

y ∼ N(µ2, σ
2
2)

V ar(xy) = E[x2y2]− E[(xy)]2 =

V ar(x)V ar(y) + V ar(x)E(y)2 + V ar(y)E(x)2

= σ2
1σ

2
2 + σ2

1µ
2
2 + σ2

2µ
2
1 (8)

For µ1 = µ2 = 0, we get

V ar(xy) = V ar(x)V ar(y) (9)

Let X ∼ N(0, σ2
xIm) and Y ∼ N

(
0, σ2

yIm
)

be m dimensional gaussian random variables,
i.e., X = [x0, x1, x2, ..., xm−1] and Y =
[y0, y1, y2, ..., ym−1], where xi ∼ N

(
0, σ2

x

)
and

yi ∼ N
(
0, σ2

y

)
∀i ∈ {0, 1, 2, ...,m− 1}. Calculating

V ar(XTY ),

V ar(XTY ) = E
[(
XTY

)2]
= E

(m−1∑
i=0

xiyi

)2

(10)

Since each xi and yi are sampled i.i.d from a Gaussian with
a fixed mean and variance, therefore the product xiyi is also
an i.i.d random variable with a distribution of the differ-
ence of two chi-squared distributions. The sum of such k
chi-squared random variables with mean µ and variance σ2

results in a chi-squared distribution with mean kµ and vari-
ance kσ2. Given this, let z = XTY . Therefore, by Eq.9, z
has a zero mean and a variance of mσ2

xσ
2
y . Thus, we have

V ar(z) = E(z2) = mσ2
xσ

2
y (11)

Using Chebyshev’s inequality, we have

P (|z| ≥ k
√
mσxσy) ≤

1

k2
(12)

where k is some constant. Therefore, we have

z = O
(√

mσxσy

)
(13)

Further, by central limit theorem, we have the distribution

of z = XTY =
m−1∑
i=0

xiyi to be approximately Gaussian.

Therefore, even for a small value of k, we have a high con-
fidence interval for bounding |z|.

Lemma 2 Let V be a standard basis vector and Y ∼
N(0, σ2

yIm) be N dimensional gaussian random variable,
then V TY = O(σy)

Proof. Let Y ∼ N(0, σ2
yIm) be m-dimensional gaussian

random variable, i.e., Y = [y0, y1, y2, ..., ym−1] where
each yi ∼ N(0, σ2

y) ∀i ∈ {0, 1, 2, ...,m− 1}. Let V =

[v0, v1, v2, ..., vm−1] and z = V TY . Since V is a standard
basis vector, we have

V ar(z) = E
[(
V TY

)2]
= E

(m−1∑
i=0

viyi

)2
 =

E
[
(yk)

2
]
= V ar(yk) = σ2

y (14)

where k is some index for which vk = 1 and vj = 0 ∀j ̸=
k. Using Chebyshev’s inequality, we have

P (|z| ≥ kσy) ≤
1

k2
(15)

where k is some constant. Therefore we have

z = O(σy) (16)

Based on the above lemmas, considering the weights
wc ∼ (0, σ2

0Id), we have

|wcvk| = O(σ0) (17)

|wcϵ
(i)| = O(σσ0) (18)

|ϵ(j)ϵ(i)| = O

(
σ2

√
d

)
(19)

|ϵ(i)vk| = O

(
σ√
d

)
(20)
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1.1. Convergence time for feature patches

Data Augmentations: As defined by Shen et al. [16], an
augmentation Tk can be defined as follows:

∀ k′ ∈ [1,K], Tk(vk′ ) = v((k′+k−1) mod K)+1 (21)

Assuming that K unique augmentation strategies are used
(where K denotes the number of robust patches in the
dataset), augmented data is defined as follows:

D
(aug)
train = Dtrain ∪ T1(Dtrain)..∪ TK−1(Dtrain) (22)

where Dtrain is the training dataset. This ensures that each
feature patch vi appears n times in the dataset, thus making
the distribution of all the feature patches uniform. In the
proposed method, we consider that m models are being in-
dependently trained after which their weights are averaged
as shown below:

w =
1

m

m∑
j=1

Kcutj∑
k=1

vkj
+

1

m

m∑
j=1

∑
k>Kcutj

y
(k)
j ϵ

(k)
j (23)

Each branch is trained on the dataset D(k)
train defined as:

D
(k)
train = Tk(Dtrain), k ∈ [1, 2, ...,m] (24)

Proposition 1 The convergence time for learning any fea-
ture patch vi ∀i ∈ [1,K] in at least one channel c ∈ C of
the weight averaged model fθ using the augmentations de-
fined in Eq.24, is given by O

(
K

σq−2
0

)
, if σq

√
d
≪ 1

K , m = K.

Proof. We first compute the convergence time without
weight-averaging, as shown by Shen et al. [16]. The dot
product between dwc

dt (from Eq.7) and any given feature vk
is given by:

d

dt
wc ·vk ≈ 1 + o(1)

2
ρkϕ

′
(|wcvk|)

+
1 + o(1)

2n

n∑
i=1

ϕ
′
(|wcϵ

(i)|)y(i)ϵ(i)vk (25)

where, ρk represents the fraction of vk in the dataset. At
initialization, we have wc ∼ (0, σ2

0Id). Therefore, using
conditions at initialization in Eq.17, 18 and 20 along with
the definition of the activation function defined for the case
|wcvd(i) | < 1 and |wcϵ

(i)| < 1, we arrive at the following
convergence time for the feature and the noisy patch, re-
spectively:

1 + o(1)

2n
ϕ

′
(|wcvk|)=O

(
ρkσ

q−1
0

)
(26)

1 + o(1)

2n

n∑
i=1

ϕ
′
(|wcϵ

(i)|)y(i)ϵ(i)vk=O

(
σq−1
0 σq

√
d

)
(27)

A closer look at the above two equations reveal that if σq
√
d
≪

1
K , the noisy patch term in Eq.25 (the second term) can be
ignored in comparison to the feature patch term (the first
term). This gives:

d

dt
wc ·vk ≈ 1 + o(1)

2
ρkϕ

′
(|wcvk|) (28)

Let us denote the term wc · vk at any time step t using a
generic function g ≡ g(wc, vk, t). Using the definition of
the activation function ϕ, and assuming that |wcvk|<1, we
get

dg

dt
=

1 + o(1)

2
ρkg

q−1 (29)

On integrating, we get the following:

(1+o(1))ρk
2

(2− q)t+ g(t=0)2−q = g(t= t)2−q (30)

t = O

(
1

ρkσ
q−2
0

)
(31)

We now compute the convergence of the case where m
models are averaged. We denote the averaged weights of
a given channel c by wavg

c . By substituting for wc from
Eq.4, we get

− 1

m

m∑
j=1

(
dL

dwc

)
j

vk =
dwavg

c

dt
vk

=
1

m

m∑
j=1

d

dt

 K∑
l=1

αt
ljvl +

∑
l>Kt

cut

y
(l)
j ϵ

(l)
j

 vk (32)

Using |ϵ(i)vk| = O
(

σ√
d

)
from Eq.20 gives us∑

l>Kt
cut

y(l)ϵ(l)vk = O
(

σ√
d

)
, whereas

K∑
l=1

αt
ljvl = O(1).

Since d represents the number of parameters, we can say
d≫ σ. Further, since ϵ(l) are i.i.d random variables, there-
fore, the value of the noise component

∑
l>Kt

cut

y(l)ϵ(l)vk is

expected to further decrease upon averaging over m mod-

els. Thus, ignoring it w.r.t. to the feature term
K∑
l=1

αt
ljvl, we

get

dwavg
c

dt
vk ≈ 1

m

d

dt

 m∑
j=1

αt
kj

 (33)

A similar analysis for a single model that is not weight-
averaged gives

dwc

dt
vk ≈ dαt

k

dt
=

dwavg
c

dt
vk

d (mαt
k)

d

(
m∑
j=1

αt
kj

) (34)
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As discussed in Section-5 of the main paper, we set m = K.
Further, since the most frequent patches are learned faster,
we assume that the relative rate of change in αkj will de-
pend on the relative frequency of individual patch features.
Therefore, dαt

k/dt

d

(
m∑

j=1
αt

kj

)
/dt

=
dαt

k/dt

d

(
K∑

j=1
αt

kj

)
/dt

= ρk. Thus we

get,
dwavg

c

dt
vk =

1

ρkK

dwc

dt
vk (35)

In Eq.35, we have the rate of change of wavg
c = 1

ρkK
times

the rate of change of wc. Therefore the time for convergence
for wavg

c will be ρkK times the time for convergence for wc,
which gives

t = O

(
K

σq−2
0

)
(36)

Corollary 1.1 The convergence time for learning any fea-
ture patch vi ∀i ∈ [1,K] in at least one channel c ∈ C
of the weight averaged model fθ using the augmentations

defined in Eq.24, is given by O

(
mρ

′
k

ρkσ
q−2
0

)
, if σq

√
d

≪ 1
K .

Here ρk is the ratio between the frequency of the fea-
ture patch k in the dataset and the sum of the frequencies
of all feature patches in the dataset. ρ

′

k is the ratio be-
tween the frequency of the feature patch k in the dataset
and the sum of the frequencies of some m feature patches
[v(k) mod K+1, v(k+1) mod K+1, ..., v(m+k−1) mod K+1]

Proof. Since the most frequent patches are learned faster,
we assume that the relative rate of change in αkj will de-
pend on the relative frequency of individual patch features.
Therefore,

dαt
k/dt

d

(
m∑
j=1

αt
kj

)
/dt

=
(αt

k)/dt(
m∑
j=1

αt
kj

)
/dt

= ρ
′

k (37)

Thus substituting in Eq.34, we get

dwavg
c

dt
vk =

1

ρ
′
km

dwc

dt
vk (38)

In Eq.38, we have the rate of change of wavg
c = 1

ρ
′
km

times the rate of change of wc. Therefore, the time for con-
vergence for wavg

c will be ρ
′

km times the time for conver-
gence for wc, which gives

t = O

(
mρ

′

k

ρkσ
q−2
0

)
(39)

The convergence time from corollary-1.1 (denoted as t)
can be written as

t = O


m

K∑
j=1

αkj

m∑
j=1

αkjσ
q−2
0

 (40)

The convergence time from Eq.31 (denoted as t
′
) can be

written as

t
′
= O


K∑
j=1

αkj

αkσ
q−2
0

 (41)

For hard to learn feature patches (feature patches with low
αk), upon comparing Eq.40 and Eq.41, we observe that the
convergence time will be higher in Eq.41. Since a sum-
mation over some m feature patches is appearing in Eq.40,
therefore its convergence time has a lower impact on the
frequency of an individual feature patch. This helps in en-
hanced learning of hard features, thereby improving gener-
alization.

1.2. Convergence time of noisy patches

We consider the dot product between any noisy patch ϵk

and Eq.7:

d

dt
wcϵ

(k) =
1 + o(1)

2n

n∑
i=1

ϕ
′
(|wcvd(i) |)vd(i)ϵ(k)+

1 + o(1)

2n

n∑
i=1

ϕ
′
(|wcϵ

(i)|)y(i)ϵ(i)ϵ(k) (42)

On simplifying we get,

d

dt
wcϵ

(k) =
1 + o(1)

2n

n∑
i=1

ϕ
′
(|wcvd(i) |)vd(i)ϵ(k)+

1 + o(1)

2n
ϕ

′
(|wcϵ

(k)|)y(k)||ϵ(k)||2

+
1 + o(1)

2n

n∑
i=1;i ̸=k

ϕ
′
(|wcϵ

(i)|)y(i)ϵ(i)ϵ(k) (43)

In Eq.43 we can ignore 1+o(1)
2n

n∑
i=1

ϕ
′
(|wcvd(i) |)vd(i)ϵ(k)

+ 1+o(1)
2n

n∑
i=1;i ̸=k

ϕ
′
(|wcϵ

(i)|)y(i)ϵ(i)ϵ(k) as compared to

1+o(1)
2n ϕ

′
(|wcϵ

(k)|)y(k)||ϵ(k)||2, if their values are of differ-
ent orders at initialization. Since, at initialization, wc ∼
(0, σ2

0Id), using conditions in Eq.17-20 and the definition of
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the activation function defined for the case of |wcvd(i) | < 1
and |wcϵ

(i)| < 1∀i ∈ [1, n], we get

1 + o(1)

2n

n∑
i=1

ϕ
′
(|wcvd(i) |)vd(i)ϵ(k) = O

(
σq−1
0 σ√
d

)
(44)

1 + o(1)

2n

n∑
i=1;i ̸=k

ϕ
′
(|wcϵ

(i)|)y(i)ϵ(i)ϵ(k) = O

(
σq−1
0 σq+1

√
d

)
(45)

Therefore,

1 + o(1)

2n

n∑
i=1

ϕ
′
(|wcvd(i) |)vd(i)ϵ(k)+

1 + o(1)

2n

n∑
i=1;i ̸=k

ϕ
′
(|wcϵ

(i)|)y(i)ϵ(i)ϵ(k) =

O

(
σq−1
0 σq+1

√
d

)
+O

(
σq−1
0 σ√
d

)
(46)

1 + o(1)

2n
ϕ

′
(|wcϵ

(k)|)y(k)||ϵ(k)||2 =

1 + o(1)

2n
σ2ϕ

′
(|wcϵ

(k)|)y(k) = O

(
σq+1σq−1

0

n

)
(47)

Comparing Eq.47 and Eq.46, we get if d ≫ n2, we

can ignore the term 1+o(1)
2n

n∑
i=1

ϕ
′
(|wcvd(i) |)vd(i)ϵ(k) +

1+o(1)
2n

n∑
i=1;i ̸=k

ϕ
′
(|wcϵ

(i)|)y(i)ϵ(i)ϵ(k) as compared to

1+o(1)
2n ϕ

′
(|wcϵ

(k)|)y(k)||ϵ(k)||2 Thus, we get the following:
Using the activation defined earlier, and considering the

value of wcϵ
(k) at time stamp t given by g(wc, ϵ

(k), t),
where |g(wc, ϵ

(k), t)| < 1, we get

d(g(wc, ϵ
(k), t))

dt
=

1 + o(1)

2n
σ2g(wc, ϵ

(k), t)q−1 (48)

Similar to the analysis presented in Eq.30, on integrating
the above equation, we get

1 + o(1)

2n
(2− q)tσ2 + g(wc, ϵ

(k), t = 0)2−q =

g(wc, ϵ
(k), t = t)2−q (49)

Using Eq.18, at t = 0,

g(wc, ϵ
(k), t = 0)2−q = σ2−q

0 σ2−q (50)

where σ0 is the standard deviation of the zero-mean Gaus-
sian distribution that is used for initializing the weights of

the model, and σ√
d

is the standard deviation of the noise
present in noisy patches. Thus, we get

1 + o(1)

2n
(2− q)tσ2 + σ2−q

0 σ2−q =

g(wc, ϵ
(k), t = t)2−q (51)

At the time of convergence, the term g(wc, ϵ
(k), t =

t)2−q will become o(1). Therefore, 1+o(1)
2n (2 − q)tσ2 +

σ2−q
0 σ2−q should be constant. Equating the L.H.S. of the

above equation to 0, the convergence time to learn ϵ(k) by
at least one channel c ∈ C is given by:

t = O

(
n

σq−2
0 σq

)
(52)

Proposition 2 If the noise patches learned by each fk
θ

are i.i.d. Gaussian random variables ∼ N
(
0, σ2

d Id

)
then

with high probability, convergence time of learning a noisy
patch ϵ(j) in at least one channel c ∈ [1, C] of the weight

averaged model fθ is given by O
(

nm

σq−2
0 σq

)
, if d ≫ n2.

Proof. By averaging the weights of m models in Eq.42, we
get

− 1

m

m∑
j=1

(
dL

dwc

)
j

ϵ(k) =
dwavg

dt
ϵ(k) =

1

m

m∑
j=1

[
1 + o(1)

2n

n∑
i=1

ϕ
′
(|wcjvd(i) |)vd(i)ϵ(k)+

1 + o(1)

2n

n∑
i=1

ϕ
′
(|wcj ϵ

(i)|)y(i)ϵ(i)ϵ(k)
]

(53)

=
1

m

m∑
j=1

[
1 + o(1)

2n

n∑
i=1

ϕ
′
(|wcjvd(i) |)vd(i)ϵ(k)+

1 + o(1)

2n
ϕ

′
(|wcj ϵ

(k)|)y(k)||ϵ(k)||22+

1 + o(1)

2n

n∑
i=1;i ̸=k

ϕ
′
(|wcj ϵ

(i)|)y(i)ϵ(i)ϵ(k)
]

(54)

=

m∑
j=1

1

m

[
1 + o(1)

2n
σ2ϕ

′
(|wcj ϵ

(k)|)y(k) + τ

]
(55)

where τ consists of the remaining terms that are negligible
since the noise learned by each model is i.i.d. and d ≫ n2.

5



Using the weights learned by different models as repre-
sented in Eq.4, we get,

dwavg

dt
ϵ(k) ≈ 1 + o(1)

2n
σ2y(k)

1

m

m∑
j=1

ϕ
′(∣∣( K∑

l=1

αt
ljvl

+
∑

l>Kt
cut

y
(l)
j ϵ

(l)
j )ϵ(k)

∣∣) (56)

Since the noise ϵ(i) learned by different models is consid-
ered as i.i.d., we get

dwavg

dt
ϵ(k) =

1 + o(1)

2nm

(
σ2y(k)ϕ

′(
|

K∑
l=1

αt
lkvlϵ

(k)+

∑
l>Kt

cut

y
(l)
k σ2|

)
+

m∑
i=1;i ̸=k

ϕ
′(
|

K∑
l=1

αt
livlϵ

(k)+

∑
l>Kt

cut

y
(l)
i ϵ

(l)
i ϵ(k)|

))
(57)

Note that from Eq.19, we have
∑

l>Kt
cut

y(l)ϵ
(l)
i ϵ(k) =

O
(

σ2
√
d

)
, and from Eq.20, we get

n∑
i=1;i ̸=k

ϕ
′
(∣∣∣∣ K∑

l=1

αt
livlϵ

(k)

∣∣∣∣) = O

((
σ√
d

)q−1
)

. Whereas

y
(l)
k σ2 = O(1). Since it is assumed that d ≫ n2, therefore,

we can ignore the terms
K∑
l=1

αt
livlϵ

(k) and
∑

l>Kt
cut

y(l)ϵ
(l)
i ϵ(k)

in comparison to
∑

l>Kt
cut

y
(l)
k σ2. Thus, we get

dwavg

dt
ϵ(k) =

1 + o(1)

2nm
σ2y(k)ϕ

′
(|

K∑
l=1

αt
lkvlϵ

(k)+∑
l>Kt

cut

y
(l)
k σ2|) (58)

Similarly, we derive the learning dynamics of a single
model wck below:

dwck

dt
ϵ(k) =

1 + o(1)

2n
σ2y(k)ϕ

′
(|

K∑
l=1

αt
lkvlϵ

(k)+∑
l>Kt

cut

y
(l)
k σ2|) (59)

From Eq.58 and Eq.59, we get the following relation

1

m

dwck

dt
ϵ(k) =

dwavg

dt
ϵ(k) (60)

In Eq.60, we have the rate of change of wavg equals 1
m times

the rate of change of wck . Therefore, the time for conver-
gence for wavg will be m times the time for convergence
for wck , which gives the convergence time for learning the
noisy patch, ϵ(k) by at least one channel c ∈ C of the model
as

t = O

(
nm

σq−2
0 σq

)
(61)

Proposition 3 If the noise learned by each fk
θ are i.i.d.

Gaussian random variables ∼ N
(
0, σ2

d Id

)
, and model

weight averaging is performed at epoch T , the convergence
time of learning a noisy patch ϵ(j) in at least one chan-
nel c ∈ [1, C] of the weight averaged model fθ is given

by T +O
(

nm(q−2)d(q−2)/2

σ(2q−2)

)
, if d ≫ n2.

Proof. We assume that the model is close to convergence at
epoch T . Hence, its weights can be assumed to be similar
to Eq.2. Further, we assume that the weights are composed
of noisy and feature patches as shown in Eq.2. Since the
noisy patches are assumed to be i.i.d., the standard devia-
tion of the weights corresponding to noisy features is given
by σ

m
√
d

. Thus, using the above lemmas, we get

g(wc, ϵ
(k), t = T )2−q = σ4−2qmq−2d

q−2
2 (62)

On integrating Eq.48 from time T and substituting the
above, we get

1 + o(1)

2n
t(2− q)σ2 + σ4−2qmq−2d

q−2
2 =

g(wc, ϵ
(k), t = t)2−q (63)

Thus, the convergence time of learning at least one channel
c ∈ C by on using this initialization is given by

t = O

(
nm(q−2)d(q−2)/2

σ(2q−2)

)
(64)

Further, the total convergence time is given by

T +O

(
nm(q−2)d(q−2)/2

σ(2q−2)

)
(65)

Since we have considered the weights to be composed of
two parts and the model is assumed to be converged with
respect to feature patches, therefore, using such an initial-
ization will not impact their learning dynamics.
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Figure 1. Loss landscape visualization
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Figure 2. Loss Contour visualization

1.3. Impact of intermediate interpolations

We assume that T in Proposition-3 is negligible w.r.t.
O
(

nm(q−2)d(q−2)/2

σ(2q−2)

)
. We further analyze the ratio of the

convergence time from Proposition-3 (denoted as t) and
Proposition-2 (denoted as t′),

t

t′
= O

(
mq−3d(q−2)/2σq−2

0

σq−2

)
(66)

A lower bound on the above equation will occur when d =
n2 and q = 3. Using this, we get

t

t′
= O

(nσ0

σ

)
(67)

Thus, the lower bound is of the order n which is greater than
1. Therefore, the convergence time of learning a noisy patch
ϵ(j) in at least one channel c ∈ [1, C] on performing an
intermediate interpolation (Prop.3) is greater than the case
where weight-averaging of only final models is performed
(Prop.2), by upto O(n).

2. Loss surface plots
We compare the loss surface of the proposed method

with ERM training on CIFAR-100 dataset using WRN-28-
10 architecture. To exclusively understand the impact of
the proposed Diversify-Aggregate-Repeat steps, we present
results using the simple augmentations - Pad and Crop fol-
lowed by Horizontal Flip (PCH) for both ERM and DART.
We use exponential moving averaging (EMA) of weights in
both the ERM baseline and DART for a fair comparison.

Table 1. Loss Landscape Sharpness Analysis: Comparison of
the proposed method DART (Pad-Crop) and ERM (Pad-Crop)
trained using WRN-28-10 on CIFAR-100. The metrics presented
here have been adapted from Stutz et al. [17]. For all metrics, a
lower value corresponds to a flatter loss landscape.

Method Worst Case Average Average
Flatness ↓ Flatness ↓ Train Loss ↓

ERM (Pad+Crop) 4.173 1.090 0.0028
DART (Pad+Crop) (Ours) 2.037 0.294 0.0022

As shown in Fig.1, the loss surface of the proposed
method DART is flatter when compared to the ERM base-
line. The same is also evident from the level sets of the con-
tour plot in Fig.2. In Table-1, we also use the scale-invariant
metrics proposed by Stutz et al. [17] to quantitatively ver-
ify that the flatness of loss surface is indeed better using the
proposed approach DART. Worst Case Flatness represents
the Cross-Entropy loss on perturbing the weights in an ℓ2
norm ball of radius 0.25. Average Flatness represents the
Cross-Entropy loss on adding random Gaussian noise with
standard deviation 0.25, and further clamping it so that the
added noise remains within the ℓ2 norm ball of radius 0.25.
Average Train Loss represents the loss on train set images
as shown in Table-1. We achieve lower values when com-
pared to the ERM baseline across all metrics, demonstrating
that the proposed method DART has a flatter loss landscape
compared to ERM.

3. Additional Results: ID generalization
3.1. Model coefficients

While in the proposed method DART, we give equal
weight to all M branches, we note that fine-tuning the
weights of individual models in a greedy manner [21] can
give a further boost in accuracy. As shown in Fig.3, the
best accuracy obtained is 86.33% at λ1 = 0.17, λ2 = 0.46,
when compared to 86.24% with λ1 = λ2 = 0.33. These
results are lower than those reported in Table-2 of the main
paper and Table-3 in the supplementary since the runs in
Fig.3 do not use EMA, while our main method does.

3.2. Training plots

We show the training plots for In-domain generalization
training of CIFAR-100 on WRN-28-10 in Fig.4. We firstly
note that not only does our method yield gains on the fi-
nal interpolation step (as seen in Table-3 and Table-2 of
the main paper), but the step of intermediate interpolation
ensures that the individual models are also better than the
ERM baselines trained using the respective augmentations.
Specifically, while the initial interpolations help in bringing
the models closer to each other in the loss landscape, the
later ones actually result in performance gains, since the low
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Figure 3. Accuracy (%) on interpolating the final converged
models trained using DART (ours) using WRN-28-10 model and
CIFAR-100 dataset, by taking their convex combination. Maxi-
mum accuracy of 86.33 is obtained on interpolating, using three
experts with accuracies 85.65, 85.75 and 85.51. For the best set-
ting, λ1 = 0.17 and λ2 = 0.46.

Table 2. Integrating DART with SAM gives around 0.2% im-
provement in performance (%) when compared to SAM with
mixed augmentations. The results are shown on CIFAR-100
dataset using WRN-28-10 model.

ERM+EMA ERM+SWA DART SAM+EMA DART+SAM+EMA

85.57 ± 0.13 85.44 ± 0.09 86.46 ± 0.12 87.05 ± 0.15 87.26 ± 0.02

learning rate ensures that the flatter loss surface obtained us-
ing intermediate weight averaging is retained.

3.3. Integrating DART with SAM

Table-2 shows that the proposed approach DART inte-
grates effectively with SAM to obtain further performance
gains. However, the gains are relatively lower on integrat-
ing with SAM (∼ 0.2%) when compared to the gains over
Mixed ERM training (∼ 0.9%). We hypothesize that this is
because SAM already encourages smoothness of loss sur-
face, which is also achieved using DART.

3.4. Evaluation across different model capacities

We present results of DART on ResNet-18 and
WideResNet-28-10 models in Table-3. The gains obtained
on WideResNet-28-10 are larger (0.2 and 0.89) when com-
pared to ResNet-18 (0.06 and 0.64) demonstrating the scal-
ability of our method.

Table 3. Different model architectures: Performance (%) of
DART when compared to Mixed-Training (MT) across different
architectures. Standard deviation is reported across 5 reruns.

Model Method CIFAR-10 CIFAR-100

ResNet18 ERM+EMA (Mixed - MT) 97.08 ± 0.05 82.25 ± 0.29

DART (Ours) 97.14 ± 0.08 82.89 ± 0.07

WRN-28-10 ERM+EMA (Mixed - MT) 97.76 ± 0.17 85.57 ± 0.13

DART (Ours) 97.96 ± 0.06 86.46 ± 0.12

4. Details on Domain Generalization

4.1. Training Details

Since the domain shift across individual domains is
larger in the Domain Generalization setting when compared
to the In-Domain generalization setting, we found that train-
ing individual branches on a mix of all domains was better
than training each branch on a single domain. Moreover,
training on a mix of all domains also improves the individ-
ual branch accuracy, thereby boosting the accuracy of the fi-
nal interpolated model. We train 4 branches (6 for Domain-
Net), where one branch is trained with an equal proportion
of all domains, while the other three branches are allowed
to be experts on individual domains by using a higher frac-
tion (40% for DomainNet and 50% for other datasets) of the
selected domain for the respective branch.

In the Domain Generalization setting, the step of explic-
itly training on mixed augmentations / domains (L4-L5 in
Algorithm-1 in the main paper) is replaced by the initializa-
tion of the model using ImageNet pretrained weights, which
ensures that all models are in the loss basin. Moreover, this
also helps in reducing the overall compute.

For the results presented in the Tables 4.3.1 to 4.3.6
and Table-4 of the main paper, the training configuration
(training iterations, interpolation frequency) was set to (15k,
1k) for DomainNet and (10k, 1k) for all other datasets,
whereas for the results presented in Table-5 in the main pa-
per, the configuration was set to (5k, 600) for DANN [6]
and CDANN [12], and (8k, 1k) for the rest, primarily to
reduce compute. The difference in adversarial training ap-
proaches (DANN and CDANN) was primarily because their
training is not stable for longer training iterations. SWAD-
specific hyperparameters were set as suggested by the au-
thors [4] without additional tuning. While we compare with
comparable compute for the In-Domain generalization set-
ting (Table-3 and Table-2 in the main paper), for the Do-
main Generalization setting we report the baselines from
DomainBed [7] and the respective papers as is the common
practice. Although the proposed approach uses higher com-
pute than the baselines, we show in Fig.5(a) that even with
higher compute, the baselines cannot achieve any better per-
formance.
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Figure 5. Performance of DART across (a) varying training it-
erations and (b) varying interpolation frequency: (a) compares
the proposed method DART’s performance with the SWAD base-
line when trained for higher number of iterations. Interpolation
frequency was maintained such that the number of interpolations
remained same (8) in every case. (b) demonstrates the effect of
intermediate interpolation frequency on DART. The training itera-
tions were kept constant (5k).

4.2. Ablation experiments

We present ablation experiments on the Office-Home
dataset in Fig.5. Following this, we present average ac-
curacy across all domain splits as is common practice in
Domain Generalization [7].

Variation across training compute: Fig.5 (a) demon-
strates that the performance of SWAD plateaus early com-
pared to DART, when trained for a higher number of train-
ing iterations. We note that DART achieves a significant
improvement in the final accuracy over the baseline. This
indicates that although the proposed method requires higher
compute, DART trades it off for improved performance.

Variation in interpolation frequency: Fig.5 (b) de-
scribes the impact of varying the interpolation frequency in
the proposed method DART. The number of training iter-
ations is set to 5k for this experiment. We note that the
accuracy is stable across a wide range of interpolation fre-
quencies (x-axis is in log scale). This shows that the pro-
posed method is not very sensitive to the frequency of inter-
polation, and does not require fine-tuning for every dataset.
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Figure 6. Study on hyperparameter sensitivity for DART (a)
shows variation in the accuracy of DART for different interpo-
lation frequencies on the OfficeHome dataset using ResNet-50
model with ImageNet initialization. A strong correlation between
the in and out-of-domain accuracy of DART in the DG setting is
observed. (b) shows the variation of In Domain Accuracy for the
CIFAR-100 dataset and WRN-28-10 model vs. the number of in-
terpolations done during the training. It is seen that the in-domain
accuracy is stable across a wide range of interpolations.

We therefore use the same interpolation frequency of 1k for
all the datasets and training splits of DomainBed. We note
that the proposed method performs better than baseline in
all cases except when the frequency is kept too low (≈10)
or too high (close to total training iterations). The sharp
deterioration in performance in the case of no intermediate
interpolation (interpolation frequency = total training steps)
illustrates the necessity of intermediate interpolation in the
proposed method.

4.3. Detailed Results

In this section, we present complete Domain General-
ization results (Out-of-domain accuracies in %) on VLCS
(Table-4.3.2), PACS (Table-4.3.3), OfficeHome (Table-
4.3.4), TerraIncognita (Table-4.3.5) and DomainNet (Table-
4.3.6) benchmarks. We also present the average accu-
racy across all domain splits and datasets in Table-4.3.1.
We note that the proposed method DART when combined
with SWAD [4] outperforms all existing methods across all
datasets.
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4.3.1 Averages
Algorithm VLCS PACS OfficeHome TerraIncognita DomainNet Avg

ERM [19] 77.5 ± 0.4 85.5 ± 0.2 66.5 ± 0.3 46.1 ± 1.8 40.9 ± 0.1 63.3
IRM [1] 78.5 ± 0.5 83.5 ± 0.8 64.3 ± 2.2 47.6 ± 0.8 33.9 ± 2.8 61.6
GroupDRO [14] 76.7 ± 0.6 84.4 ± 0.8 66.0 ± 0.7 43.2 ± 1.1 33.3 ± 0.2 60.7
Mixup [20] 77.4 ± 0.6 84.6 ± 0.6 68.1 ± 0.3 47.9 ± 0.8 39.2 ± 0.1 63.4
MLDG [10] 77.2 ± 0.4 84.9 ± 1.0 66.8 ± 0.6 47.7 ± 0.9 41.2 ± 0.1 63.6
CORAL [18] 78.8 ± 0.6 86.2 ± 0.3 68.7 ± 0.3 47.6 ± 1.0 41.5 ± 0.1 64.5
MMD [11] 77.5 ± 0.9 84.6 ± 0.5 66.3 ± 0.1 42.2 ± 1.6 23.4 ± 9.5 58.8
DANN [6] 78.6 ± 0.4 83.6 ± 0.4 65.9 ± 0.6 46.7 ± 0.5 38.3 ± 0.1 62.6
CDANN [12] 77.5 ± 0.1 82.6 ± 0.9 65.8 ± 1.3 45.8 ± 1.6 38.3 ± 0.3 62.0
MTL [3] 77.2 ± 0.4 84.6 ± 0.5 66.4 ± 0.5 45.6 ± 1.2 40.6 ± 0.1 62.9
SagNet [13] 77.8 ± 0.5 86.3 ± 0.2 68.1 ± 0.1 48.6 ± 1.0 40.3 ± 0.1 64.2
ARM [22] 77.6 ± 0.3 85.1 ± 0.4 64.8 ± 0.3 45.5 ± 0.3 35.5 ± 0.2 61.7
VREx [9] 78.3 ± 0.2 84.9 ± 0.6 66.4 ± 0.6 46.4 ± 0.6 33.6 ± 2.9 61.9
RSC [8] 77.1 ± 0.5 85.2 ± 0.9 65.5 ± 0.9 46.6 ± 1.0 38.9 ± 0.5 62.7
SWAD [4] 79.1 ± 0.1 88.1 ± 0.1 70.6 ± 0.2 50.0 ± 0.3 46.5 ± 0.1 66.9

DART w/o SWAD 78.5 ± 0.7 87.3 ± 0.5 70.1 ± 0.2 48.7 ± 0.8 45.8 66.1
DART w/ SWAD 80.3 ± 0.2 88.9 ± 0.1 71.9 ± 0.1 51.3 ± 0.2 47.2 67.9

4.3.2 VLCS

Algorithm C L S V Avg

ERM 97.7 ± 0.4 64.3 ± 0.9 73.4 ± 0.5 74.6 ± 1.3 77.5
IRM 98.6 ± 0.1 64.9 ± 0.9 73.4 ± 0.6 77.3 ± 0.9 78.5
GroupDRO 97.3 ± 0.3 63.4 ± 0.9 69.5 ± 0.8 76.7 ± 0.7 76.7
Mixup 98.3 ± 0.6 64.8 ± 1.0 72.1 ± 0.5 74.3 ± 0.8 77.4
MLDG 97.4 ± 0.2 65.2 ± 0.7 71.0 ± 1.4 75.3 ± 1.0 77.2
CORAL 98.3 ± 0.1 66.1 ± 1.2 73.4 ± 0.3 77.5 ± 1.2 78.8
MMD 97.7 ± 0.1 64.0 ± 1.1 72.8 ± 0.2 75.3 ± 3.3 77.5
DANN 99.0 ± 0.3 65.1 ± 1.4 73.1 ± 0.3 77.2 ± 0.6 78.6
CDANN 97.1 ± 0.3 65.1 ± 1.2 70.7 ± 0.8 77.1 ± 1.5 77.5
MTL 97.8 ± 0.4 64.3 ± 0.3 71.5 ± 0.7 75.3 ± 1.7 77.2
SagNet 97.9 ± 0.4 64.5 ± 0.5 71.4 ± 1.3 77.5 ± 0.5 77.8
ARM 98.7 ± 0.2 63.6 ± 0.7 71.3 ± 1.2 76.7 ± 0.6 77.6
VREx 98.4 ± 0.3 64.4 ± 1.4 74.1 ± 0.4 76.2 ± 1.3 78.3
RSC 97.9 ± 0.1 62.5 ± 0.7 72.3 ± 1.2 75.6 ± 0.8 77.1
SWAD 98.8 ± 0.1 63.3 ± 0.3 75.3 ± 0.5 79.2 ± 0.6 79.1

DART w/o SWAD 97.9 ± 1.0 64.2 ± 0.7 73.9 ± 1.1 78.1 ± 1.6 78.5
DART w/ SWAD 98.7 ± 0.0 66.4 ± 0.3 75.8 ± 0.6 80.4 ± 0.3 80.3

4.3.3 PACS

Algorithm A C P S Avg

ERM 84.7 ± 0.4 80.8 ± 0.6 97.2 ± 0.3 79.3 ± 1.0 85.5
IRM 84.8 ± 1.3 76.4 ± 1.1 96.7 ± 0.6 76.1 ± 1.0 83.5
GroupDRO 83.5 ± 0.9 79.1 ± 0.6 96.7 ± 0.3 78.3 ± 2.0 84.4
Mixup 86.1 ± 0.5 78.9 ± 0.8 97.6 ± 0.1 75.8 ± 1.8 84.6
MLDG 85.5 ± 1.4 80.1 ± 1.7 97.4 ± 0.3 76.6 ± 1.1 84.9
CORAL 88.3 ± 0.2 80.0 ± 0.5 97.5 ± 0.3 78.8 ± 1.3 86.2
MMD 86.1 ± 1.4 79.4 ± 0.9 96.6 ± 0.2 76.5 ± 0.5 84.6
DANN 86.4 ± 0.8 77.4 ± 0.8 97.3 ± 0.4 73.5 ± 2.3 83.6
CDANN 84.6 ± 1.8 75.5 ± 0.9 96.8 ± 0.3 73.5 ± 0.6 82.6
MTL 87.5 ± 0.8 77.1 ± 0.5 96.4 ± 0.8 77.3 ± 1.8 84.6
SagNet 87.4 ± 1.0 80.7 ± 0.6 97.1 ± 0.1 80.0 ± 0.4 86.3
ARM 86.8 ± 0.6 76.8 ± 0.5 97.4 ± 0.3 79.3 ± 1.2 85.1
VREx 86.0 ± 1.6 79.1 ± 0.6 96.9 ± 0.5 77.7 ± 1.7 84.9
RSC 85.4 ± 0.8 79.7 ± 1.8 97.6 ± 0.3 78.2 ± 1.2 85.2
DMG [5] 82.6 78.1 94.3 78.3 83.4
MetaReg [2] 87.2 79.2 97.6 70.3 83.6
DSON [15] 87.0 80.6 96.0 82.9 86.6
SWAD 89.3 ± 0.2 83.4 ± 0.6 97.3 ± 0.3 78.2 ± 0.5 88.1

DART w/o SWAD 87.1 ± 1.5 83.5 ± 0.9 96.9 ± 0.3 81.8 ± 0.9 87.3
DART w/ SWAD 90.1 ± 0.1 84.5 ± 0.2 97.7 ± 0.2 83.4 ± 0.1 88.9

4.3.4 OfficeHome

Algorithm A C P R Avg

ERM 61.3 ± 0.7 52.4 ± 0.3 75.8 ± 0.1 76.6 ± 0.3 66.5
IRM 58.9 ± 2.3 52.2 ± 1.6 72.1 ± 2.9 74.0 ± 2.5 64.3
GroupDRO 60.4 ± 0.7 52.7 ± 1.0 75.0 ± 0.7 76.0 ± 0.7 66.0
Mixup 62.4 ± 0.8 54.8 ± 0.6 76.9 ± 0.3 78.3 ± 0.2 68.1
MLDG 61.5 ± 0.9 53.2 ± 0.6 75.0 ± 1.2 77.5 ± 0.4 66.8
CORAL 65.3 ± 0.4 54.4 ± 0.5 76.5 ± 0.1 78.4 ± 0.5 68.7
MMD 60.4 ± 0.2 53.3 ± 0.3 74.3 ± 0.1 77.4 ± 0.6 66.3
DANN 59.9 ± 1.3 53.0 ± 0.3 73.6 ± 0.7 76.9 ± 0.5 65.9
CDANN 61.5 ± 1.4 50.4 ± 2.4 74.4 ± 0.9 76.6 ± 0.8 65.8
MTL 61.5 ± 0.7 52.4 ± 0.6 74.9 ± 0.4 76.8 ± 0.4 66.4
SagNet 63.4 ± 0.2 54.8 ± 0.4 75.8 ± 0.4 78.3 ± 0.3 68.1
ARM 58.9 ± 0.8 51.0 ± 0.5 74.1 ± 0.1 75.2 ± 0.3 64.8
VREx 60.7 ± 0.9 53.0 ± 0.9 75.3 ± 0.1 76.6 ± 0.5 66.4
RSC 60.7 ± 1.4 51.4 ± 0.3 74.8 ± 1.1 75.1 ± 1.3 65.5
SWAD 66.1 ± 0.4 57.7 ± 0.4 78.4 ± 0.1 80.2 ± 0.2 70.6

DART w/o SWAD 64.3 ± 0.2 57.9 ± 0.9 78.3 ± 0.6 79.9 ± 0.1 70.1
DART w/ SWAD 67.1 ± 0.2 59.2 ± 0.1 79.7 ± 0.1 81.5 ± 0.1 71.9

4.3.5 TerraIncognita

Algorithm L100 L38 L43 L46 Avg

ERM 49.8 ± 4.4 42.1 ± 1.4 56.9 ± 1.8 35.7 ± 3.9 46.1
IRM 54.6 ± 1.3 39.8 ± 1.9 56.2 ± 1.8 39.6 ± 0.8 47.6
GroupDRO 41.2 ± 0.7 38.6 ± 2.1 56.7 ± 0.9 36.4 ± 2.1 43.2
Mixup 59.6 ± 2.0 42.2 ± 1.4 55.9 ± 0.8 33.9 ± 1.4 47.9
MLDG 54.2 ± 3.0 44.3 ± 1.1 55.6 ± 0.3 36.9 ± 2.2 47.7
CORAL 51.6 ± 2.4 42.2 ± 1.0 57.0 ± 1.0 39.8 ± 2.9 47.6
MMD 41.9 ± 3.0 34.8 ± 1.0 57.0 ± 1.9 35.2 ± 1.8 42.2
DANN 51.1 ± 3.5 40.6 ± 0.6 57.4 ± 0.5 37.7 ± 1.8 46.7
CDANN 47.0 ± 1.9 41.3 ± 4.8 54.9 ± 1.7 39.8 ± 2.3 45.8
MTL 49.3 ± 1.2 39.6 ± 6.3 55.6 ± 1.1 37.8 ± 0.8 45.6
SagNet 53.0 ± 2.9 43.0 ± 2.5 57.9 ± 0.6 40.4 ± 1.3 48.6
ARM 49.3 ± 0.7 38.3 ± 2.4 55.8 ± 0.8 38.7 ± 1.3 45.5
VREx 48.2 ± 4.3 41.7 ± 1.3 56.8 ± 0.8 38.7 ± 3.1 46.4
RSC 50.2 ± 2.2 39.2 ± 1.4 56.3 ± 1.4 40.8 ± 0.6 46.6
SWAD 55.4 ± 0.0 44.9 ± 1.1 59.7 ± 0.4 39.9 ± 0.2 50.0

DART w/o SWAD 54.6 ± 1.1 44.9 ± 1.6 58.7 ± 0.5 36.6 ± 1.9 48.7
DART w/ SWAD 56.3 ± 0.4 47.1 ± 0.3 61.2 ± 0.3 40.5 ± 0.1 51.3

4.3.6 DomainNet

Algorithm clip info paint quick real sketch Avg

ERM 58.1 ± 0.3 18.8 ± 0.3 46.7 ± 0.3 12.2 ± 0.4 59.6 ± 0.1 49.8 ± 0.4 40.9
IRM 48.5 ± 2.8 15.0 ± 1.5 38.3 ± 4.3 10.9 ± 0.5 48.2 ± 5.2 42.3 ± 3.1 33.9
GroupDRO 47.2 ± 0.5 17.5 ± 0.4 33.8 ± 0.5 9.3 ± 0.3 51.6 ± 0.4 40.1 ± 0.6 33.3
Mixup 55.7 ± 0.3 18.5 ± 0.5 44.3 ± 0.5 12.5 ± 0.4 55.8 ± 0.3 48.2 ± 0.5 39.2
MLDG 59.1 ± 0.2 19.1 ± 0.3 45.8 ± 0.7 13.4 ± 0.3 59.6 ± 0.2 50.2 ± 0.4 41.2
CORAL 59.2 ± 0.1 19.7 ± 0.2 46.6 ± 0.3 13.4 ± 0.4 59.8 ± 0.2 50.1 ± 0.6 41.5
MMD 32.1 ± 13.3 11.0 ± 4.6 26.8 ± 11.3 8.7 ± 2.1 32.7 ± 13.8 28.9 ± 11.9 23.4
DANN 53.1 ± 0.2 18.3 ± 0.1 44.2 ± 0.7 11.8 ± 0.1 55.5 ± 0.4 46.8 ± 0.6 38.3
CDANN 54.6 ± 0.4 17.3 ± 0.1 43.7 ± 0.9 12.1 ± 0.7 56.2 ± 0.4 45.9 ± 0.5 38.3
MTL 57.9 ± 0.5 18.5 ± 0.4 46.0 ± 0.1 12.5 ± 0.1 59.5 ± 0.3 49.2 ± 0.1 40.6
SagNet 57.7 ± 0.3 19.0 ± 0.2 45.3 ± 0.3 12.7 ± 0.5 58.1 ± 0.5 48.8 ± 0.2 40.3
ARM 49.7 ± 0.3 16.3 ± 0.5 40.9 ± 1.1 9.4 ± 0.1 53.4 ± 0.4 43.5 ± 0.4 35.5
VREx 47.3 ± 3.5 16.0 ± 1.5 35.8 ± 4.6 10.9 ± 0.3 49.6 ± 4.9 42.0 ± 3.0 33.6
RSC 55.0 ± 1.2 18.3 ± 0.5 44.4 ± 0.6 12.2 ± 0.2 55.7 ± 0.7 47.8 ± 0.9 38.9
MetaReg 59.8 25.6 50.2 11.5 64.6 50.1 43.6
DMG 65.2 22.2 50.0 15.7 59.6 49.0 43.6
SWAD 66.0 ± 0.1 22.4 ± 0.3 53.5 ± 0.1 16.1 ± 0.2 65.8 ± 0.4 55.5 ± 0.3 46.5

DART w/o SWAD 65.9 21.9 52.6 15.1 64.9 54.3 45.8
DART w/ SWAD 66.5 22.8 54.2 16.1 67.3 56.3 47.2
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