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Abstract

This draft accompanies the main paper. It provides
more experimental results showing the suitability of our
proposed approach. Furthermore, it discusses the graph
neural network-based multiple rotation averaging and our
software implementation details.

1. Synthetic Objects
We further evaluate our proposed method on a syn-

thetic object-centric dataset to investigate its advantages in
cases where all points lie within a threshold distance from
the camera. The aim is to examine whether integrating a
monocular depth with the estimated stereo structure is help-
ful for these cases. We use the same setup as SVS [11]
for evaluation, separating ten images as target novel images
and use the remaining 39 as the source images for evalu-
ating interpolation and extrapolation. Table 1 compares all
the baselines and our method on this dataset. It consists of
results for both view interpolation (left value) and extrap-
olation setups (right value) for this dataset as done in the
SVS paper [11]. It can be observed that even in this case,
which doesn’t involve far-away points, our method is ei-
ther similar in performance or performs better, especially in
terms of PSNR values. Also, performance gap on the ex-
trapolation task is marginally higher than the interpolation
counterpart, for the PSNR values. This further highlights
the importance of our method for the nearby region where
we try to maximize the consistency between RGB-D fea-
tures and stero-estimated projection of image features, for
places where the monocular network is highly confident.

2. Scene-Agnostic Model
We analyze the scene-agnostic version of our approach

and SVS, also comparing with the FVS [10] method. The
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model is trained on scenes corresponding to training data
and then is directly evaluated on a disjoint set of test scenes
without any tuning. Table 2 shows the results for this ver-
sion on the four scenes of the Tanks and Temples data set
used in the paper, namely truck, M60, playground and train,
where the model is trained using the 15 other scenes from
this dataset. It can be observed that our approach can of-
fer significantly better results, even in the scene-agnostic
setup, when compared with SVS and FVS. Also, for both
our method and SVS, the results are improved from scene-
specific finetuning compared to the scene-agnostic setup,
which can be observed by comparing the statistics presented
in Table 2 here and Table 1 in the main paper.

3. Graph Neural Networks for MRA
We now discuss our pose refining scheme inspired from

NeuRoRA [8]. It uses a Message Passing Neural Network
(MPNN) to predict robust poses given a completely initial-
ized view graph. Given the estimated relative rotations us-
ing an SFM algorithm, they are used to initialize absolute
rotations by fixing a source vertex as the frame of reference
and then calculating absolute rotation of each vertex w.r.t.
this frame by traversing along the minimum spanning tree.
This is followed by a cyclic consistency check to remove
outliers. Finally, we have the initialized observed relative
rotations and initialized absolute rotations. These comprise
a completely initialized view-graph.
Now, for each node k in this graph, with neighbouring set
denoted by Qk, the state of this node at step t, denoted by
htk, is generated by processing the aggregated signal feature
stj it receives from all the nodes v ∈ Qk and its state at step
t− 1:

htk = ρ(ht−1
k , stk) (1)

where ρ is some function to process these features jointly.
The aggregated signal stk is just a processed combination of
updated states of edges corresponding to this node k:

stk = ψa
i∈Qk

ψb(ht−1
k , ht−1

i , rij) (2)
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PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓ SSIM↑

FVS [10] 30.1/25.2 0.03/0.07 0.97/0.95 32.3/27.1 0.03/0.08 0.95/0.93 34.9/28.7 0.02/0.07 0.97/0.94
SVS [11] 31.9/26.1 0.02/0.06 0.97/0.95 33.8/29.7 0.02/0.04 0.98/0.95 36.7/30.8 0.02/0.05 0.97/0.96

Ours 32.4/26.9 0.03/0.07 0.98/0.96 34.3/30.6 0.02/0.03 0.98/0.96 37.1/31.3 0.02/0.05 0.97/0.96

Table 1. Performance comparison with on DTU dataset [5]. We use the popular metrics i.e., PSNR, LPIPS and SSIM for the comparison.

Truck M60 Playground Train
PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓ SSIM↑

FVS [10] 21.9 0.14 0.84 15.8 0.32 0.77 21.7 0.21 0.83 17.3 0.28 0.75
SVS [11] 22.2 0.16 0.85 18.4 0.24 0.79 22.4 0.20 0.83 17.3 0.21 0.79

Ours 23.4 0.14 0.88 19.6 0.23 0.85 22.6 0.18 0.89 19.2 0.16 0.84

Table 2. Performance comparison with state-of-the-art methods on Tanks and Temples dataset [7] in a scene-agnostic setup. We use the
popular metrics i.e., PSNR, LPIPS and SSIM for the comparison.

where, ψb is a processing function responsible for updat-
ing the signal accumulated from the edge between nodes i
and k, rij is a feature representation for this edge. This is
followed by a differentiable operation ψa, which can be in-
terpreted as some activation function. For our case, both
and ψb are concatenation with 1D convolutions and a ReLU
activation. Please refer [4, 8] for further details.

Pose-refining GNN. Given the completely initialized view
graph, we denote the rotations corresponding to its vertices
as R̃i. Also, the edges of these view graph comprise the
relative rotations between the 2 nodes. The edge feature rij
described above is the calculated using these observed rel-
ative rotation between the two nodes denoted as R̃ij . The
input to the GNN is the set of rotations R̃i and the edge fea-
ture rij . This edge feature is calculated as the discrepancy
between the initialized absolute rotations R̃i and observed
relative rotations R̃ij as follows:

rij = R̃−1
j R̃ijR̃i (3)

This leads to a supervised learning problem for the GNN,
where, using the input graph denoted as {R̃i, rij}, the aim
is to estimate the absolute rotations R̂i as close as possible
to the correct rotations {Ri} in the source node frame:

{R̂i} = G({R̃i}; Θ) (4)

where Θ denote the pose-GNN parameters. The network
is trained for this setup using the rotation averaging loss
described in the paper. Specifically, the goal is to mini-
mize the discrepancy between observed relative rotations
R̃ij and estimated relative rotations R̂jR̂

−1
i . Given only

relative rotations are used in this loss function, this it might
be same even if any constant angular deviation to the pre-
dicted rotations. Thus following NeuRoRA [8], we also add
a weighted regularizer term to learn a one-to-one mapping
between inputs and outputs which minimizes the discrep-
ancy between initialized absolute rotations and predicted

absolute rotations. This leads to the following aggregated
cost function Lmra for a given graph with E denoting its
edge set and V denoting the set of nodes:

Lmra =
∑
Eij∈E

dQ(R̂jR̂
−1
i , R̃ij) + β

∑
Vi∈V

dQ(R̂i, R̃i) (5)

where dQ is some distance metric between two rotations.
We also follow quaternion representation for these rotations
similar to NeuRoRA [8].

4. Adapting to other methods
To further show the effectiveness of our joint feature es-

timation and pose updating proposition, we experimented
with other popular frameworks, namely IbrNet [3] and S-
IbrNet [2], on two scenes of the Tanks and Temples dataset
namely Truck and Playground (P.G.), in our setup. This is
done by updating their feature generation modules and in-
tegrating our pose-refining module for joint optimization.
Table 3 shows the PSNR values for this experiment show-
ing numbers for these methods before and after (E-IbrNet,
E-SIbrNet) the integration and also compares these results
with the method proposed in the paper. It can be observed
that both the methods (IbrNet, S-IbrNet) have their PSNR
values improved significantly (around 1.7, 0.9 on average
across the two scenes) and finally, our proposed method in
the paper performs the best on both the scenes.

IbrNet [3] S-IbrNet [2] E-IbrNet E-SIbrNet Ours
Truck 19.7 22.5 21.9 23.6 24.1
P.G. 22.2 23.1 23.3 23.7 23.9

Table 3. PSNR comparison. E-IbrBet and E-SIbrNet show the
results when our approach is put to [3] and [2] network design.

5. Ablation on depth threshold (σ)
For all the experiments, we have set the depth threshold

value based on our empirical observations. We extensively



analyzed this quantity on the Tanks and Temples dataset
and have set it as 0.66 (relative to median depth) for all the
datasets used in the paper. Table 4 shows the analysis of
PSNR values on two scenes of Tanks and Temples dataset
(Truck, M60) for various values of this quantity (relative to
the median depth). It can be observed that the best results
are at the value of 0.66, thereby providing justification for
the selected value.

σ 0.25 0.50 0.66 1.0 1.25 1.5 2.0
Truck 23.4 23.8 24.1 23.6 23.6 23.5 23.5
M60 20.4 20.3 20.8 20.4 20.5 20.2 20.3

Table 4. PSNR values for ablation on the depth threshold value.

6. Training and Evaluation details
We now discuss the implementation details involving

the training and evaluation setup along with values for
parameters involved in our approach. The training is
performed on the tanks and temples dataset for our method,
SVS [11] and FVS [10]. Then, for the results on all the
scenes corresponding to various datasets discussed in the
paper, we tune our method and SVS for scene-specific
Network fine-tuning as discussed in SVS [11]. For the
baselines including NeRF++ [14], SC-NeRF [6] and
Point-NeRF [13] also require per-scene fitting. This
scene-specific training/tuning involves using a source
image set of that scene for learning and a disjoint test set
of images corresponding to the same scene for evaluation.
For the scene agnostic scenario, trained models on tanks
and temples are directly evaluated on the test set of the
scene. Also, the Lrgb loss term, used in the Eq.(13) in the
main paper, corresponds to the perceptual loss described in
Eq.(6) in the SVS paper [11].

Architecture details. The monocular depth prediction
is a DPT [9] architecture trained on Omnidata [1]. The
network for predicting confidence score for each pixel is
just-another head starting from fifth last layer of the depth
prediction network with the same architecture as that of
the depth prediction head. This is trained while keeping
the depth prediction network as frozen. Note, the complete
architecture is just used for obtaining depth and confidence
per pixel and then is linked with rest of the pipeline. Also,
the confidence weighted loss involves l2 regularization
of the predicted weights to avoid the solutions, where
each/most of the weights are assigned to a single/some
pixels. The network Fθ for projecting monocular features
consists of a ResNet-50 architecture equipped with the
Channel Exchanging Layers [12]. The functions ϕα, ϕβ
and ϕµ are each 3 layered CNN networks followed by a
BatchNorm layer and a ReLU activation. For the SVS
features, the architecture used in the SVS paper is followed

involving a U-Net for encoding images. As discussed in the
paper, the rendering network is also a U-Net architecture
same as in SVS paper [11].

Hyperparameter details. The training is performed us-
ing an Adam optimizer setting learning rate to 10−3, β1 to
0.9, β2 to 0.999 and ϵ to 10−8. The model is trained for
600,000 iterations on the training set with batch size of 1
and 3 source images sampled per iteration, following the
SVS setup [11]. The tuning on the testing scene is carried
out for 100, 00 iterations. The confidence threshold param-
eter τ is set to 0.05. The predefined depth threshold (σ) for
applying Eq.(8) in the main paper is two-thirds the median
depth of the scene.
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