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S.1. Addtional Methods

Mechanical-Linear Loss. Similar to linear spring force

from the mechanical model [5], the mechanical-linear loss

measures the average distance A =
∑N−1

i=0
∥pi+1

t+1 − pit+1∥2
between adjacent predicted contour points and forces ev-

ery distance between adjacent points to be the same as the

average distance. Here, each predicted contour point is

pit+1 = φ(Ot→t+1(p
i
t)). The mechanical-linear is differ-

ent from Snake [4] algorithm’s tension term, which simply

minimizes the distance between adjacent points.

Lmech-linear =

Nt−2∑

i=0

∥∥pi+1

t+1 − pit+1∥2 −A∥1 (1)

Photometric Loss. Inspired by UFlow [3], we imple-

mented photometric loss that minimizes the forward-then-

backward tracked point’s pixel intensity to match its origi-

nal point’s pixel intensity. Similar to the cycle consistency

loss, forward and backward consistency losses are com-

bined. But photometric loss measures the difference in pixel

intensity, not the distance.

Lphoto =

Nt−1∑

i=0

∥γ(pit)− γ(Ot+1→t(p
i
t+1))∥1

+

Nt−1∑

i=0

∥γ(pit+1)− γ(Ot→t+1(p
i
t))∥1

(2)

Retrieving a point’s pixel intensity is denoted as γ.

Segmentation To provide an ordered sequence of contour

points Ct as input to our contour tracker, the cell body is

segmented first. Confocal fluorescence live cell videos [9]

have a distinct boundary between the cell body and dark

background, so conventional image thresholding is enough

to obtain their segmentation masks. However, the live cell

videos taken with phase contrast microscope [2] have chal-

lenging visual features such as halo and shade-off artifacts.

As a result, a specialized deep segmentation model [2] for

phase contrast live cell videos is adopted. Both datasets

used in our paper are not manually segmented, so their seg-

mentation masks contain some noise.

Labeling Tool We developed the labeling tool in Python

to expedite the labeling process, as shown in Fig. S.1.1. It

is available as an executable application in Windows 10/11.

The labeling tool loads images with contour tracking points

marked on the contour of the image. A user can click on the

main view to create a tracking point, indicated by the blue

circle. Scrolling up or down zooms in or out at the location

of the user’s cursor. The zoomed-in window is shown on

the left pane of the GUI. Prev or next button on the bottom

changes the frame such that the user can view how points

move in consecutive frames and label tracking points. Cre-

ated tracking points can be dragged to change their loca-

tions. Press the save button to save tracking points labeled

at the current frame, or press the clear button to remove all

labeled tracking points.

Training Details In this section, we provide training de-

tails about our contour tracker and two compared methods,

UFlow [3], and PoST [6]. Our contour tracker, UFlow

and PoST are all trained from scratch except for the Im-

ageNet [1] pre-trained VGG16 encoder and ResNet50 en-

coder in our contour tracker and PoST, respectively. The

architecture of UFlow [3] is kept the same, but we modi-

fied PoST [6] to improve its performance since their orig-

inal architecture did not perform well in our dataset. Our

contour tracker, UFlow [3], and PoST [6] are trained by un-

supervised learning with cycle consistency loss. But our

contour tracker is also trained with mechanical-normal loss.

UFlow [3] only takes images as input, while PoST [6] and

our contour tracker take both images and contour points as

input for training and inference.

S.2. Addtional Results

We qualitatively validate dense point-to-point correspon-

dences in the long sequences of phase contrast (PC) [2] and

confocal fluorescence (CF) live cell videos [9] and a jelly-



Figure S.1.1. GUI for labeling tracking points.

fish video [8] on our webpage at https://junbongjang.

github.io/projects/contour-tracking/. They are

best viewed in 1080p, HD resolution. The dense corre-

spondences are shown with arrows pointing from the first

frame’s contour Ct to the second frame’s contour Ct+1. The

arrows are colored by the sequence of contour points’ order

from red to purple. The length of the arrow is the magni-

tude of the contour point’s movement. The direction and

magnitude of the arrows align well with our expectations,

except for some abrupt changes in contour points due to the

segmentation error.

For the jellyfish video, we picked 200 frames long se-

quence containing a single jellyfish from the Rainbow Jelly-

fish Benchmark [8]. Since our contour tracker is trained by

unsupervised learning in less than a day, we train on a jelly-

fish video and predict dense point-to-point correspondences

on the same video, which removes the need for making a

training dataset.

Short & Long Term Tracking. In our main paper, we

only evaluated long-term tracking of the points from the

first to the last frame, so the point tracked from the pre-

vious frame was used to track in the next frames. Addi-

tionally, we evaluate both short-term and long-term track-

ing in Fig. S.2.1, which shows that the tracking error ac-

cumulates as the number of frames to track increases. At

first, the Mechanical model [5] and our contour tracker has

similar tracking accuracy, but the Mechanical model’s [5]

tracking accuracy decreases much faster than our contour

tracker’s. Cumulative Mean accuracy is obtained by aver-

aging all SA or CA up to the frame number t, which is the

x-axis in Fig. S.2.1.

Error Study. We performed an error study in the phase

contrast videos [2]. The tracking accuracy is linearly pro-

portional to the magnitude of the cellular movement. The

spatial accuracy (SA.02) decreases by about 0.02 as the ab-

solute velocity increases by 1. The velocity is in unit pix-

els/frame and is perpendicular to the cellular contour. Dur-

ing cellular expansion and contraction, SA.02 is 0.731 and

Ours (SA.02)

Ours (CA.01)

Mechanical (SA.02)

Mechanical (CA.01)

Frames

C
M

A

Figure S.2.1. Cumulative mean accuracy (CMA) from the first to

the last frame on one of the confocal fluorescence videos [9].

0.710, respectively, so the direction of the cellular motion

does not significantly affect the accuracy.

Forward and Backward Tracking. Only the forward

cross attention is used to regress offsets for inference be-

cause forward tracking achieves significantly higher accu-

racy than backward tracking by 0.16/0.43 at SA.02/CA.01

in the phase contrast videos [2]. Ideally, both forward and

backward tracking’s performance should be similar, but our

contour tracker is trained with mechanical-normal loss that

updates the weights of the forward cross attention layer only

during backpropagation. For computational efficiency dur-

ing inference, the backward cross attention layer can be re-

moved from our contour tracker such that backward offsets

Ot+1→t are not predicted.

S.3. Limitations

The segmentation error affects the performance of both

the mechanical model and our contour tracker, which uses

features from the contour and maps correspondence be-

tween contour points. For future work, jointly train-

ing our contour tracker with the segmentation model end-

to-end will refine contours and then find contour point

correspondences. Also, segmentation accuracy can be

further improved by transfer learning with diverse mi-

croscopy datasets [2] or a human-in-the-loop approach

without preparing large-scale datasets [7].

Our contour tracker can naturally handle many-to-one

correspondences (merging) but not one-to-many correspon-

dences (splitting). For future work, implementing one-to-

many correspondences will handle expanding contours even

better. One potential way is to regress backward offset

from the second contour to the first contour and find many-

to-one correspondences, which become one-to-many corre-

spondences when reversed.
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