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1. Introduction
We present supplementary materials for our CVPR sub-

mission below. As discussed in the paper, our approach
signficantly outperforms the state-of-the-art in the Sparse
view settings. For datasets used in the paper, the average
number of views across videos in sparse and full settings
are as shown in Table 1.

Dataset # of Videos # of Views
Full Sparse

ZJU-MoCap [4] 6 556 43
People Snapshot [2] 7 517 39

SCF 7 - 40

Table 1. The average number of views across videos in sparse and
full settings for various datasets.

By default, our internal SCF dataset has sparse views.
The videos are shorter, 8 − 9 seconds on average, and do

*Part of the work was done while the author was an intern at Amazon.

not have multiple full rotations of the human subject. After
removing stationary and redundant frames, the number of
input frames average to ≈ 40. Thus, results on SCF dataset
are in sparse setting by default.

2. Free-viewpoint Rendering
Given a monocular video, the task of free-viewpoint ren-

dering involves pausing at any arbitrary frame and render-
ing the corresponding 3600 video path from the viewpoint.
This enables to freeze the subject while viewing it from all
directions. We illustrate the free-viewpoint capabilities of
our method in examples below.

Figure 1 (top row) shows 5 frames of a monocular video
from SCF dataset. The video features a human subject dis-
playing rapid, complex motions. We learn the FlexNeRF
model using sparse views (≈ 40) from the video. The bot-
tom row shows rendering of the paused middle frame (de-
picted in red bounding box) by moving the camera in a 3600

path around the subject. Notice the missing hand regions
and blurred hands in HumanNeRF outputs. Our approach
results in higher rendering quality.

Similarly, Figure 2 shows the free-view point rendering
for ZJU-Mocap dataset, comparing HumanNeRF [6] with
our approach using sparse views. Compared to our ap-
proach, HumanNeRF renderings show blurred clothing as
well as ghosting artifacts close to arms. Please zoom in for
details. Figure 3 shows the corresponding results for the
dense view setting.



Figure 1. Example of free-viewpoint rendering on SCF dataset. (Top Row): 5 frames from an input video. (Middle Row): The middle
frame (highlighted in red box) is rendered using HumanNeRF method by freezing the frame and rotating the camera around the subject.
(Bottom Row): Similar to the middle row, but rendered with our approach. Notice the missing/blurred hands in HumanNerF outputs. Our
approach provides higher quality renderings.



Figure 2. Example of free-viewpoint rendering on the ZJU-MoCap dataset using sparse views. (Top Row): 5 frames from the video.
(Second Row): Middle frame is rendered with HumanNeRF by freezing the frame and rotating the camera around the subject. (Third
Row): Similar to the second row, but rendered with our approach.



Figure 3. Example of free-viewpoint rendering on the ZJU-MoCap dataset using full views. (Top Row): 5 frames from the video. (Second
Row): Middle frame is rendered with HumanNeRF by freezing the frame and rotating the camera around the subject. (Third Row): Similar
to the second row, but rendered with our approach.

3. Architecture Details

Now we present details on the architecture of various
networks used in our framework.

3.1. Motion Weight Volume Network

The rigid motion field xR can be calculated with the
aid of the motion weight volume W c(x) = CNNθR(x; z),
where z is a constant latent random vector initialized with
a Gaussian distribution. In this CNN illustrated in Figure 4,
the output of the first fully-connected layer with 1024 units
is reshaped in to 4 dimensions, followed by 5 transposed
convolutions layers with LeakyReLU activation [8], pro-
ducing the motion weight volume W c(x) ∈ R4. The final
layer of the CNN has (K + 1) channels, where K is the to-
tal number of 3D joint locations, which is 24 in our case.
As motion priors, we add an approximate Gaussian bone
volume [5] computed for the chosen canonical pose to the
output of the CNN.

3.2. Temporal Deformation Network

Figure 5. Temporal deformation network MLPθTD

The temporal deformation MLP, MLPθTD
consists of

8 fully connected layers as illustrated in Figure 5. Except
for the last two layers, the other layers have ReLU activa-
tion [1]. It takes in the positional encoded temporal vectors
τ(vot )) and τ(vct )), and the positional encoded point posi-



Figure 4. Motion Weight Volume Network CNNθR(x; z).

tion vectors τ(xo) and τ(xc) as inputs. The observed en-
codings τ(vot )) and τ(xo) are skip connected to the fifth
layer to generate the deformation ∆xT .

3.3. Scene Representation Network

Figure 6. Scene representation network MLPθo(γ(x̂
o))

The scene representation MLP MLPθo(γ(x̂
o)) consists

of 8 fully connected layers with 256 units and ReLU activa-
tion [1], followed by another fully connected layer with 128
and ReLU activation (Figure 6). The positional embedded
observed x̂o and observed directions d̂o are skip connected
to the fifth and eighth layers respectively. The outputs color
c(x̂o) and density σ(x̂o) are obtained via fully connected
layers with 3 and 1 units respectively.

4. Optimization Details

Figure 7. Learnable threshold b converges to 0 as training pro-
gresses.

Learning the threshold b: As discussed in the paper, the
thresholding approach proposed for the rendering binary
segmentation map employs a learnable threshold b, to ease

training. For a well-learned model, this threshold should
ideally be 0. Figure 7 shows that the learnable threshold b
indeed converges to 0 as training progress.
Optimizer: We optimize the FlexNeRF model using the
Adam optimizer [3] with learning rates set to 5 × 10−4

for the Scene representation network, canonical to ob-
served transformation, and binary segmentation MLPs, and
5 × 10−5 for the rest of the networks. We use a weight de-
cay of 0.01 as a form of regularization for parameters such
as the learnable threshold b and the temporal vectors.

The FlexNeRF model is trained on a setup with 4 V100
GPUs, takes in 6 patches of 32×32 each, and produces ren-
dered images of size 512×512. The corresponding rays are
sampled 128 times each. The model convergence requires
500K iterations taking up to approximately 78− 80 hours.

5. Additional Results

Below we showcase additional quantitative results on
public datasets.

5.1. Quantitative Results (ZJU-MoCap Dataset)

We present the performance breakdown of FlexNeRF on
individual videos of the ZJU-MoCap dataset [4] for the full
view setting in Table 2. We select the following subject
IDs: (377, 386, 387, 392, 393, 394) compatible with [6] for
comparison purposes. We observe that our approach out-
performs the state-of-the-art across all videos and metrics,
except for the PSNR metric on the subject 377. The perfor-
mance gain of our approach is the lowest for the subject 377
in comparison to HumanNeRF, since it has the least amount
of non-rigid artifacts out of all the subjects.

Method LPIPS ×103 ↓ PSNR ↑ SSIM ↑
Neural Body [4] 57.67∗ 24.62 0.8490

H-NeRF [7] 57.31∗ 26.33 0.8680
HumanNeRF [6] 36.79 28.05 0.8984

Ours 35.63 28.77 0.9043

Table 3. Quantitative performance comparison on the People
Snapshot [2] dataset. ∗ refers to adjusted LPIPS from the values
reported in [7] to fit the same scale as our experiments.



Method Subject 377 Subject 392
LPIPS ×103 ↓ PSNR ↑ SSIM ↑ LPIPS ×103 ↓ PSNR ↑ SSIM ↑

Neural Body [4] 40.95 29.11 0.9674 53.27 30.10 0.9642
HumanNeRF [6] 24.06 30.41 0.9743 32.12 31.04 0.9705

Ours 23.58 30.39 0.9761 30.96 32.17 0.9769

Method Subject 386 Subject 393
LPIPS ×103 ↓ PSNR ↑ SSIM ↑ LPIPS ×103 ↓ PSNR ↑ SSIM ↑

Neural Body [4] 46.43 30.54 0.9678 59.05 28.61 0.959
HumanNeRF [6] 28.99 33.20 0.9752 36.72 28.31 0.9603

Ours 27.29 34.59 0.9803 33.85 29.87 0.9711

Method Subject 387 Subject 394
LPIPS ×103 ↓ PSNR ↑ SSIM ↑ LPIPS ×103 ↓ PSNR ↑ SSIM ↑

Neural Body [4] 59.47 27.00 0.9518 54.55 29.1 0.9593
HumanNeRF [6] 35.58 28.18 0.9632 32.89 30.31 0.9642

Ours 32.49 29.57 0.9786 30.76 31.97 0.9709

Table 2. Comparison of various performance metrics on the ZJU-MoCap [4] dataset.

5.2. Quantitative Results (People Snapshot Dataset)

We present additional performance comparison with H-
NeRF [7] on the People Snapshot [2] dataset under the full
setting in Table 3. It is evident that our approach surpass the
state-of-the-art across all metrics.
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