
Supplementary Material: Adversarial Counterfactual Visual Explanations

A. Detailed Implementation Details

For each dataset, we used different configurations in ar-
chitecture and for the generation of the pre-explanation.
Yet, we tune all hyperparameters from a empirical perspec-
tive1. We tuned τ such that the input image and its filtered
instance are visually similar. Additionally, the classification
between these two images are the same. To adjust the hy-
perparameter λd, we performed a simple visual inspection.
Finally, for the threshold, we ablated its values empirically
for each dataset. When using the distance loss ℓ1, we set
the distance regularization constant to λd = 0.001 while
λd = 0.1 for ℓ2. For the final refinement, firstly, we nor-
malize the mask by the maximum pixel’s difference mag-
nitude. For the dilation step, we set the mask as a square
with a width and height of 15 pixels for all datasets. Fi-
nally, we used the cross entropy for all experiments as the
Lclass loss. Next, we will show all implementation details
for each dataset.

CelebA [5]: We used the same architecture and weights
as [3]. Additionally, we set τ = 5 with a total amount
of steps as 50. At the refinement stage, we used the same
threshold of 0.15 for both ℓ1 and ℓ2 experiments for smile
and age attributes.

CelebA HQ [4]: Our model follows the same architec-
ture than [2] for ImageNet 256 × 256 unconditional gen-
eration. Since CelebA HQ is far less complex than Im-
ageNet, we reduced the number of channels from 256 to
128. Also, our model generates samples using 500 diffusion
steps instead of 1000. For training, we iterated our model
for 120.000 iterations with a batch size of 256 on two V100
GPUs following [2]’s code. We set the learning rate to 104,
a weight decay of 0.05, and no dropout.

To generate the pre-explanations, we noise the image un-
til τ = 5 out of 25 re-spaced steps. To binarize the mask,
we used a threshold of 0.15 and 0.1 for the smiling attribute
with the ℓ1 and ℓ2 distance losses, respectively. For the age
attribute, we used 0.15 for ℓ1 and 0.05 for ℓ2.

BDD100k/OIA [6, 7]: The counterfactual explanation

1Note that all these hyperparameters are not the same as the classically
found in machine learning. These variables can be adjusted by the user
in an ‘online’ manner according to his/her expectations. Hence, a global
configuration is a mere rough estimate of these parameters and can be ac-
commodated instance-wise.

research community opted to use BDD100k in a 512× 256
setup. This is highly demanding computationally to create
a DDPM. Thus, since we knew a priori that we do not need
many iterations for ACE to generate counterfactuals, we
trained our diffusion model partially in the Markov chain.
That is, our DDPM cannot generate images from pure noise.
Instead, we trained it to generate images solely from a quar-
ter of the complete chain, requiring an input instance to
warm up the generation. So, we trained our model to gen-
erate instances with 250 steps out of 1000. This enabled us
to use a lighter model. Artitecnologically, our UNet model
has four downsampling stages with 128 s channels, where
s is the downsampling stage. Finally, we used the attention
layer at the deeper layer of the UNet. At the training phase,
we used a batch size of 256, a learning rate of 104, and a
weight decay and dropout of 0.05 for 50.000 iterations.

To generate our explanations, we used 5 out of 100 (re-
spaced) diffusion steps. For ℓ1, we used a threshold of 0.05
and 0.1 for ℓ2 for both datasets.

ImageNet [1]: For this dataset, we took advantage of
previous works. In this case, we utilised [2]’s model on
ImageNet 256. To generate the explanations, we used 5
steps out of 25 for the pre-explanations and set the threshold
to 0.15 to binarize the mask for all cases.

B. Overview of ACE
ACE is a two-step method: firstly is the pre-explanation

construction – Algorithm 1 – and then the refinement pro-
cess – Algorithm 2. To generate the pre-explanation, (1) we
add noise to the input image x using the forward Markov
chain until an intermediate step τ , i.e. it doesn’t begin from
random Gaussian noise. Instead, it warms up the generation
with the input image through

xt =
√
ᾱt x+

√
1− ᾱt ϵ, ϵ ∼ N (0, I).

(2) ACE iteratively denoises the noisy image using the
DDPM algorithm with

xt−1 = µt(xt) + Σt(xt) ϵ, ϵ ∼ N (0, I),

where µt and Σt are the output of the diffusion model.
(3) The scrutinized classifier uses the filtered image to com-
pute loss function. Then, we calculate the gradients with

1



respect to the input image x in step 1, all the way through
the τ steps of the diffusion model. (4) ACE applies the gra-
dients as the update step with the attack of choice. It iter-
ates these four steps to create the pre-explanation. For the
refinement, it creates the mask m using the difference be-
tween the pre-explanation and the original input. Then, it
dilates and thresholds it to generate the binary version. Fi-
nally, ACE builds on RePaint to keep untouched any region
lying outside the mask. The final result is the counterfactual
explanation.

Algorithm 1 Pre-explanation generation

Require: Diffusion Model D, Distance loss d and its reg-
ularization constant λd, classification loss Lclass com-
prising the classifier under observation, number of nois-
ing steps τ , attack optimization algorithm PGD, num-
ber of update iterations n, initial instance x, target label
y

1: function PRE-EXPLANATION(x, y)
2: n← 0
3: xorig ← x
4: while n < N do ▷ Attack iteration steps
5: ϵ ∼ N (0, I)
6: x′ ←

√
ᾱτx+

√
1− ᾱτ ϵ ▷ Add noise

7: ts← τ − 1
8: while ts ≥ 0 do ▷ DDPM denoising
9: µ,Σ← D(x′, ts)

10: ϵ ∼ N (0, I)
11: x′ ← µ+ ϵΣ
12: ts← ts− 1
13: end while
14: g ← ∇x′Lclass(x

′; y′) + λdd(x
′, xorig)

15: x← PGD(x, g) ▷ Update with attack
16: n+ 1← n
17: end while
18: return x′ ▷ Pre-explanation
19: end function

C. Qualitative Results
In this section, we show more qualitative results. We

will display the input image, its pre-explanation, the mask,
and the final counterfactual for both ℓ1 and ℓ2 losses on all
datasets. Note that we added a small discussion on the cap-
tion analyzing the results. In Fig. 10, we compare a few
examples of DiME and ACE.

Algorithm 2 Post-processing

Require: Diffusion Model D, number of noising steps τ ,
mask dilation size d, threshold u, initial instance x, pre-
explanation x′

1: function POST-PROCESSING(x, x’)
2: xorig ← x
3: ϵ ∼ N (0, I)
4: x′ ←

√
ᾱτx

′ +
√
1− ᾱτ ϵ

5: ts← τ − 1
6: # Mask generation
7: m← sum over channels(abs(x− x′))
8: m← m/maximum(m)

9: m← dilation(m, size = d) > u
10: while ts ≥ 0 do ▷ DDPM denoising
11: ϵ ∼ N (0, I)
12: xts ←

√
ᾱtsx+

√
1− ᾱtsϵ

13: x′ ← mx′ + (1−m)xts

14: µ,Σ← D(x′, ts)
15: ϵ ∼ N (0, I)
16: x′ ← µ+ ϵΣ
17: ts← ts− 1
18: end while
19: return x′ ▷ Counterfactual explanation
20: end function

References
[1] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li

Fei-Fei. Imagenet: A large-scale hierarchical image database.
In 2009 IEEE conference on computer vision and pattern
recognition, pages 248–255. Ieee, 2009. 1

[2] Prafulla Dhariwal and Alexander Quinn Nichol. Diffusion
models beat GANs on image synthesis. In Thirty-Fifth Con-
ference on Neural Information Processing Systems, 2021. 1

[3] Guillaume Jeanneret, Loı̈c Simon, and Frédéric Jurie. Diffu-
sion models for counterfactual explanations. In Proceedings
of the Asian Conference on Computer Vision (ACCV), Decem-
ber 2022. 1

[4] Cheng-Han Lee, Ziwei Liu, Lingyun Wu, and Ping Luo.
Maskgan: Towards diverse and interactive facial image ma-
nipulation. In IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), 2020. 1

[5] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep
learning face attributes in the wild. In Proceedings of Inter-
national Conference on Computer Vision (ICCV), December
2015. 1

[6] Yiran Xu, Xiaoyin Yang, Lihang Gong, Hsuan-Chu Lin, Tz-
Ying Wu, Yunsheng Li, and Nuno Vasconcelos. Explain-
able object-induced action decision for autonomous vehicles.
2020 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 9520–9529, 2020. 1

[7] Fisher Yu, Haofeng Chen, Xin Wang, Wenqi Xian, Yingying
Chen, Fangchen Liu, Vashisht Madhavan, and Trevor Darrell.
Bdd100k: A diverse driving dataset for heterogeneous mul-
titask learning. 2020 IEEE/CVF Conference on Computer



Figure 1. Additional CelebA qualitative results. We show examples for the Smiling attribute for both distances losses. From our qualitative
experiments, we see that removing the smile attributes is harder than adding them. Additionally, we see that the ℓ1 loss creates more sparse
editings.
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2020. 1



Figure 2. Additional CelebA qualitative results. We show examples for the Age attribute for both distances losses. The results show that
the ℓ1 loss creates more out-of-distribution artifacts.



Figure 3. Additional CelebA HQ qualitative results. We show examples for the Smiling attribute for both distances losses. We see similar
behavior in the CelebA dataset.



Figure 4. Additional CelebA HQ qualitative results. We show examples for the Age attribute for both distances losses. These examples
show that transforming Old to Young is less informative than the other way.



Figure 5. Additional BDD qualitative results. We show examples for the Forward / Slow Down binary class for ℓ2 distance loss. We show
a zoom of the changes in the image since the perturbations are sparse. We see that ACE adds traffic light colors in the buildings to change
the prediction.



Figure 6. Additional BDD qualitative results. We show examples for the Forward / Slow Down binary class for ℓ1 distance loss. We show
a zoom of the changes in the image since the perturbations are sparse. We show a zoom of the changes in the image since the perturbations
are sparse. We see that ACE adds traffic light colors in the buildings to change the prediction.



Figure 7. Additional ImageNet qualitative results. We show examples for the Zebra / Sorrel categories class. The first column is the ℓ1
distance loss while the second one is ℓ2. The initial row is zebra to sorrel and the second one is the inverse. To change from zebras to
sorrels, some examples show not only incorporating the brown color sorrel horses but also the context in the background (e.g. adding a
stable-like background). Vice-versa, to classify a horse as a zebra it is enough to add some strips.



Figure 8. Additional ImageNet qualitative results. We show examples for the Cheetah / Cougar categories class. The first column is the ℓ1
distance loss while the second one is ℓ2. The first row is cheetah to cougar and the second is the inverse. We mainly see that changing from
cheetah to cougar is enough to target the face of the animal. Vice-versa, to classify a cougar as a cheetah, ACE adds spots and characteristic
cheetah stripes on the face.



Figure 9. Additional ImageNet qualitative results. We show examples for the Egyptian / Persian cat categories class. The first column is
the ℓ1 distance loss while the second one is ℓ2. The row is Egyptian to Persian cat and the second is the inverse. To change from Egyptian
to Persian, we mainly see that ACE adds the Persian cats’ fluffy fur. Conversely, from Persian to Egyptian it adds spots.



Figure 10. ACE vs. DiME. We display some examples showing some differences between DiME counterfactuals and ACE’s. In short,
ACE is capable of not modifying useless information, such as the background, to generate its counterfactuals. Top row: CelebA. Bottom
row: CelebA HQ. Left Column: Smiling attribute. Right Column: Age attribute.
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