
Appendix for ‘GENIE: Show Me the Data For Quantization’

A. Implementation Details
For all experiments related to data distillation, we set the

batch size to 128 and used the Adam [4] optimizer with
an initial learning rate of 0.01 and 0.1 for the generator
and latent vectors, respectively. The learning rate for the
generator decays exponentially by gamma (= 0.95) every
100 steps, whereas the learning rate for the latent vectors
is scheduled with ”ReduceLROnPlateau” like that in Ze-
roQ [1]. For all experiments, we distilled 1024 images,
which were used for quantization. Each batch was inde-
pendently distilled, and the weights of the generator were
shared only within a batch. In other words, the weights of
the generator are initialized when distilling another batch.

For model distillation, we set the batch size to 32 and
used the Adam optimizer to train the quantization parame-
ters, namely, the scaling factor sw, softbit V , and step size
sa of activations, the initial learning rates for which were
0.0001, 0.001, and 0.00004, respectively. We also used co-
sine annealing [6] to decay the learning rate to 0 for the
scaling factors of weights and step size of activations during
optimization. We obtained pre-trained models from public
repositories1,2.

B. Block-Wise Optimization
To optimize the quantized models, we minimize the re-

construction error between two blocks, which is sequen-
tially performed from the input layers as follows:

argmin
sw,sa,V

∥z − zq∥22 , (A1)

where z and zq are the outputs of the two blocks in the pre-
trained teacher and quantized student models, respectively.
Subsequently, we ensure that the softbits h(V)3 takes 0 or 1
by adding the regularization term to Eq. (A1). Namely,

argmin
sw,sa,V

∥z − zq∥22 + λ
∑
i,j

(1−
∣∣2h(Vi,j)− 1

∣∣β), (A2)

where h(·) denotes the rectified sigmoid function [7] and β
is annealed during optimization like that in AdaRound [8].

1https://github.com/yhhhli/BRECQ
2https://github.com/osmr/imgclsmob
3For a brief explanation, we notated softbits as only V with the sigmoid

function h(·) omitted, in the manuscript.

Algorithm A1 Layer-wise reconstruction for quantization
Input: Full-precision weights W ∈ Rm×n and input activations x
Output: Quantized layer
1: procedure GENIE-M(W ,x, bits)
2: WeightQuant←GENIE-M(W , bits) ▷ Algorithm 2
3: sa=Initialize(x1) ▷ Init. step size of act. by 1st batch
4: for each input x do
5: y = W · x
6: xq ← sa ·

⌈
x
sa

⌋
▷ Act. quant. using LSQ [3]

7: W q ←WeightQuant()
8: ŷ ←W q · xq

9: L ← ||ŷ − y||22 + λfreg(V) ▷ See Eq. (A2)
10: L.backward() ▷ Update sw , sa, and V with respect to L

Figure A1. Comparison of quantization points in the inverted
residual block of MobileNetV2, where AIT does not quantize the
output of the block.

The Lagrange multiplier λ in Eq. (A2) is set to 1.0 or 0.1
for all experiments involving GENIE-M, QDROP [11] and
BRECQ [5], respectively. Algorithm A1 summarizes our
quantization approach, where we assume that a block con-
sists of one layer for a concise explanation (i.e., layer-wise
optimization). In practice, we designate a block (that con-
sists of consecutive layers) as a residual block, like that in
QDROP and BRECQ.

C. Quantization Setting

When quantizing models into WwAa, QDROP quantizes
the weights and activations into w and a, respectively, ex-

1

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0
p in Eq. (A3)

42

44

46

48

50

52

54

56

Ac
cu

ra
cy

 (%
)

MobileNet-V2 W2A4

Genie-M
without Genie-M

Figure A2. Comparison of accuracy depending on the p in
Eq. (A3).

cluding the first and last layers where the weights of the first
and last and input activations of the last layers are quantized
into 8-bit fixed-point numbers. BRECQ additionally quan-
tizes the output activations of the first layer into 8-bit while
the other weights and activations are the same as in QDROP.
In contrast, AIT [2] quantizes the weights and activations of
all layers (including the first and last layers) into w and a,
respectively. AIT quantizes activations only after the acti-
vation functions, so quantizing activations is often omitted
when there is no activation function at the end of the resid-
ual block, as in MobileNetV2 [9] and MnasNet [10] (Fig-
ure A1). The methods depicted in Tables 2 and 3 follow
the settings of BRECQ, whereas those depicted in Tables 4
and 5 follow the setting of AIT and QDROP, respectively.

D. Effect of the Initial Step Size
Figure A2 shows the performance of the quantized mod-

els depending on p used when the step size of weights is
initialized as follows:

s∗ = argmin
s

∥∥∥∥∥∥W − s · clip

(⌊
W

s

⌉
, n, p

)∥∥∥∥∥∥
p,p

. (A3)

Because QDROP and BRECQ maintain the initial step size
of weights during optimization, the initialized step size can
affect the performance of the quantized models. In contrast,
GENIE-M learns the step size, and thus the initial step size
has a negligible impact on the accuracy.

E. Generator
The generator used in GENIE-D is modified based on the

generator of GDFQ [12], and it accepts latent vectors of
size 256 as inputs. To reduce dependency on the genera-
tor, we use only one upsampling block, which performs the

Figure A3. Structure of the generator and upscale block

128 256 512 1024 2048
samples

40

45

50

55

60

65

to
p-

1
ac

c.
 (%

)
GENIE
ZeroQ
Qimera

(a) ResNet-18

128 256 512 1024 2048
samples

30
35
40
45
50
55
60
65
70

to
p-

1
ac

c.
 (%

)

GENIE
ZeroQ
Qimera

(b) ResNet-50

128 256 512 1024 2048
samples

0

10

20

30

40

50

to
p-

1
ac

c.
 (%

)

GENIE
ZeroQ
Qimera

(c) MobileNetV2

Figure A4. The influence of the number of samples on model ac-
curacy (W2A4)

following sequence of operations: ”Upsampling-Conv2D-
BatchNorm-LeakyReLU”. In contrast, GDFQ uses two up-
sampling blocks with latent vectors of size 100 as inputs

Table A1. The influence of the number of samples on model accuracy (W2A4)

ResNet-18 ResNet-50 MobileNetV2
samples ZeroQ Qimera GENIE ZeroQ Qimera GENIE ZeroQ Qimera GENIE

128 57.99 38.29 60.50 61.98 27.25 65.04 30.59 0.97 44.57
256 59.67 42.82 62.26 64.21 33.23 67.23 34.25 1.22 47.66
512 61.00 45.92 63.39 65.76 38.10 68.51 35.71 1.38 49.69

1024 61.96 47.96 64.34 66.72 41.00 69.87 36.58 1.40 49.89
2048 62.68 48.79 64.72 67.37 43.85 69.99 36.74 1.40 50.78

(Figure A3). Intuitively, increasing the size of the latent
vectors could produce diverse data while a deeper generator
could help in learning more common knowledge of the input
domain. However, the performance of the quantized models
does not highly depend upon the depth of the generator and
the size of the latent vectors in our experiments.

F. Informativeness of Synthetic Data

To measure the informativeness of the synthetic data, we
conduct experiments on the influence of the number of sam-
ples on model accuracy, where we identify how much in-
formation the distilled data provide when quantizing net-
works. As shown in Table A1 and Figure A4 (where we
use QDROP as the quantizer), the distilled data by GE-
NIE-D is more contributing to the enhancement of quan-
tized networks. Especially, the quantization results with
128 images from GENIE-D outperform those with 1K im-
ages from Qimera throughout all models. In other words, a
small quantity of images produced by GENIE-D provides
more helpful information with quantized networks, com-
pared with other methods. Thus, we can consider that the
images by GENIE-D are more informative to model quanti-
zation than those by other methods.

G. Comparison on Convergence

Figure A5 compares the trace of the BNS loss (Eq. (5))
for the three approaches: ZeroQ distills knowledge to the
images directly. GBA uses the generator using the Gaus-
sian noise as the input to synthesize samples. GENIE-D dis-
tills knowledge into the latent vectors while optimizing the
generator. Unlike GBA, by training latent vectors, the loss
of GENIE-D converges to a lower loss than that of GBA;
however, it is not lower than that of ZeroQ in spite of its
better quantization performance. This implies that learning
common knowledge or image prior by the generator is as
important as achieving a low loss.

H. PTQ vs. QAT

To evaluate the performance of the data distilled by GE-
NIE-D with QAT, we adopt AIT as the quantizer and vary
the number of samples to identify how much data to need

0 500 1000 1500 2000 2500 3000 3500 4000
steps

0
2
4
6
8

10
12
14
16
18

lo
ss

GBA
GENIE
ZeroQ

0 500 1000 1500 2000 2500 3000 3500 4000
steps

0
1
2
3
4
5
6
7
8
9

10
lo

ss
GBA
GENIE
ZeroQ

0 500 1000 1500 2000 2500 3000 3500 4000
steps

0
400
800

1200
1600
2000
2400
2800
3200
3600
4000

lo
ss

GBA
GENIE
ZeroQ

Figure A5. The trace of the BNS loss for the three approaches:
ZeroQ, GBA, and GENIE

for QAT. As shown in Table A2, the size of the synthetic
data does not significantly affect the performance of quan-
tized networks. As well, the results show poor performance
rather than that of PTQ with only 1K images. Consider-
ing both the performance and time for image generation
and training (including time for hyperparameter searching),
PTQ is more efficient and suitable for ZSQ. Existing works
train only the generator, and thus can generate data in-
finitely. Because they use 80K steps with 16 batches for
QAT, they generate a total of 1.28M during the training.

Methods
#Bits
(W/B)

#Synthetic
dataset

Top-1
Accuracy(%)

- Full Prec. 32/32 - 71.47

QAT

GDFQ+AIT

4/4

65.51
ARC+AIT 1.28M 65.73

Qimera+AIT 66.83

GENIE-D+AIT

1K 63.98
5K 65.88
10K 66.55
20K 66.67
100K 66.91

PTQ GENIE [ours] 1K 68.51

Table A2. Comparison between PTQ and QAT on ResNet-18

References
[1] Yaohui Cai, Zhewei Yao, Zhen Dong, Amir Gholami,

Michael W Mahoney, and Kurt Keutzer. ZeroQ: A novel
zero shot quantization framework. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 13169–13178, 2020. 1

[2] Kanghyun Choi, Hye Yoon Lee, Deokki Hong, Joonsang Yu,
Noseong Park, Youngsok Kim, and Jinho Lee. It’s all in the
teacher: Zero-shot quantization brought closer to the teacher.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 8311–8321,
2022. 2

[3] Steven K Esser, Jeffrey L McKinstry, Deepika Bablani,
Rathinakumar Appuswamy, and Dharmendra S Modha.
Learned step size quantization. In International Conference
on Learning Representations (ICLR), 2019. 1

[4] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. International Conference on Learn-
ing Representations (ICLR), 2015. 1

[5] Yuhang Li, Ruihao Gong, Xu Tan, Yang Yang, Peng Hu, Qi
Zhang, Fengwei Yu, Wei Wang, and Shi Gu. BRECQ: Push-
ing the limit of post-training quantization by block recon-
struction. In International Conference on Learning Repre-
sentations (ICLR), 2021. 1

[6] Ilya Loshchilov and Frank Hutter. SGDR: Stochastic gradi-
ent descent with warm restarts. International Conference on
Learning Representations (ICLR), 2017. 1

[7] Christos Louizos, Max Welling, and Diederik P Kingma.
Learning sparse neural networks through l0 regularization.
In International Conference on Learning Representations
(ICLR), 2018. 1

[8] Markus Nagel, Rana Ali Amjad, Mart Van Baalen, Chris-
tos Louizos, and Tijmen Blankevoort. Up or down? adap-
tive rounding for post-training quantization. In International
Conference on Machine Learning (ICML), pages 7197–
7206, 2020. 1

[9] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey
Zhmoginov, and Liang-Chieh Chen. MobileNetV2: In-
verted residuals and linear bottlenecks. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 4510–4520, 2018. 2

[10] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan,
Mark Sandler, Andrew Howard, and Quoc V Le. Mnas-

Net: Platform-aware neural architecture search for mobile.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 2820–2828,
2019. 2

[11] Xiuying Wei, Ruihao Gong, Yuhang Li, Xianglong Liu,
and Fengwei Yu. QDrop: Randomly dropping quantization
for extremely low-bit post-training quantization. In Inter-
national Conference on Learning Representations (ICLR),
2021. 1

[12] Shoukai Xu, Haokun Li, Bohan Zhuang, Jing Liu, Jiezhang
Cao, Chuangrun Liang, and Mingkui Tan. Generative low-
bitwidth data free quantization. In European Conference on
Computer Vision (ECCV), pages 1–17. Springer, 2020. 2

