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Abstract

In this supplementary material, we first summarize the
definitions of notations used in this paper in Sec. 1, and de-
scribe the detailed training setups in Sec. 2. In Sec. 3, we
provide more details about the proposed MVSeg dataset.
Then in Sec. 4, we provide more quantitative results, in-
cluding the segmentation results on the validation set of
MVSeg, the segmentation results of each class in the test set
of MVSeg, and the efficiency results on the test of MVSeg. In
Sec. 5, we show more qualitative visualizations on diverse
scenarios of the MVSeg dataset, including daytime, night-
time with dim light, nighttime with overexposure, rainy, and
snowy scenarios. These experimental results consistently
demonstrate the superiority of our method to engage multi-
spectral video data for semantic segmentation. Finally, we
discuss potential future research directions in Sec. 6.

1. Notation and Definition
In Table 1, we summarize the notations and correspond-

ing definitions used in this paper for better understanding.

2. Training Setups
Our code is implemented on the Pytorch platform and

trained using two Nvidia RTX A6000 GPUs. Here we
adopt various segmentation networks as the encoders (e.g.,
DeepLabv3+ [1] with ResNet50 [10]). For the RGB stream,
we initialize the network parameters using weights pre-
trained on ImageNet [7]. For the thermal stream, we
randomly initialize the network parameters, and generate
3-channel thermal images as inputs by repeating the 1-
channel thermal images. Each image is uniformly resized
to 320 × 480, and we perform random horizontal flipping
and cropping to avoid potential over-fitting. Following [29],
we use Adam optimizer with an initial learning rate of 2e-4,
which is adaptively scheduled based on training loss: the

learning rate is kept constant until the loss reaches a mini-
mum plateau, after which we decrease it by 20%, until the
learning rate reaches a minimum value of 1e-8. We set the
batch size to 2. Following [2], τ is set to 0.1. λ is set to
0.001 empirically. We select 3 memory frames (i.e., L=3),
as discussed in ablation section. The network training in-
volves two-stages: the first stage is backbone warming-up
trained with only annotated query frames (150 epochs), and
the second stage is main-training of MVNet trained with
query and memory frames (200 epochs). In Table 2, we
conduct comparison experiments to evaluate our two-stage
training strategy and one-stage training with main-training
only. It is shown that integrating our backbone warming-up
stage improves the mIoU score by 1.53%. This is because
the backbone warming-up process enables the model to in-
fer more meaningful semantic masks for memory frames
at the early training stage, thereby providing representative
prototypical features for training the entire MVNet.

3. More Dataset Details

Dataset preparation: We gathered RGB-thermal videos
from multiple sources in related works, including OSU [5],
INO [14], RGBT234 [20], and KAIST [13]. It is known
that the multispectral datasets suffer from the misalignment
issue, even in the KAIST dataset which has improved align-
ment by a beam splitter. To further address this issue, we
implemented several proactive measures. Specifically, we
performed a visualization screening process by overlaying
thermal heat maps onto paired RGB images, making it eas-
ier for inspectors to verify alignment. This process resulted
in a filtering rate of 77% (180K/233K), effectively remov-
ing relatively low-quality image pairs and ensuring the qual-
ity of our MVSeg dataset to a large extent. Additionally, for
videos with minor misalignment near the edges, we cropped
and retained the central regions to minimize misalignment
issues. Ultimately, we selected 738 high-quality video shots
(averaging 5 seconds each) to comprise our MVSeg dataset.
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Table 1. Summary of the notations and corresponding definitions used in this paper.

Notation Definition
t The time subscript for query (current) frame.
L The number of past frames used in memory.
U The set of time scripts of query and memory frames; U={t−L, . . . , t−1, t}.
d The time subscript of a certain frame in the set of U .
M The set of modality types; M = {R, T, F}, representing RGB, thermal, and fused types, respectively.
m A specific modality type in the set of M.
Imd The multispectral video input, in which d ∈ U,m ∈ {R, T}.
fmd ∈ RH×W×D The extracted multispectral video features, where H×W represents the spatial size, D is the channel

dimension, and m ∈ M, d ∈ U .
C The set of semantic categories.
c, c̄ A specific semantic category in the set of C.
|C| The number of semantic categories.
pm The prototypical memory feature on each modality, where {pm ∈ RL|C|×D}m∈M.
wm The intermediate weighting maps in MVFuse module.
P , N The positive set and negative set in MVRegulator loss.
Fm
d ∈ RH×W×D The memory-augmented multispectral video features building upon fmd .

Table 2. Ablation analysis of training schemes, where the models
trained through different training strategies.

Settings mIoU(%)
Main-training only 52.99

Main-training with backbone warming-up (Ours) 54.52

Dataset composition and split: The composition and split
of the MVSeg dataset are summarized in Table 3, where we
pay attention to provide a reasonable distribution of video
sources across sets without obvious domain shift.

Table 3. Detailed composition and split of the MVSeg dataset.

Overall Train Val Test
#Vids #GTs #Vids #GTs #Vids #GTs #Vids #GTs

INO [14] 160 811 107 549 19 92 34 170
KAIST [13] 332 1585 204 1013 32 142 96 430
OSU [5] 8 40 3 20 2 6 3 14
RGBT234 [20] 238 1109 138 659 31 138 69 312
Total 738 3545 452 2241 84 378 202 926

4. Additional Quantitative Results
In this section, we provide more quantitative results of

our MVNet and related approaches. Table 4 presents the
segmentation results on the validation set of MVSeg. It is
observed that, compared to the image-based segmentation
models (i.e., FCN [26], PSPNet [39], and DeepLabv3+ [1]),
our MVNet variants consistently bring substantial perfor-
mance gains of 2.73%, 2.85% and 2.53%, respectively. This
proves the superiority of our MVNet in incorporating mul-
tispectral video data to improve semantic segmentation ac-
curacy. In Table 5, we also provide detailed results on each
class of the MVSeg test set for reference. In Table 6, we
show more results of related MSS/VSS methods, including

CNN-based and transformer-based networks. We also apply
our method to the transformer-based image segmentation
network, SegFormer (MiT-B1&-B2) [35], to provide a more
thorough validation. The model parameters, GPU memory
usage during training, and inference time (ms) per frame are
also included. These results consistently verify the benefits
of incorporating multispectral temporal contexts for seman-
tic segmentation as well as the superiority of our approach.

5. Additional Qualitative Results
In this section, we provide more qualitative results of our

MVNet and related approaches. We first visualize more
segmentation results of diverse scenarios in the test set of
MVSeg, including common daytime scenes, nighttime with
dim light, nighttime with overexposure, rainy, and snowy
scenarios, as shown in Fig. 2 to Fig. 6. For each video exam-
ple, we show three representative video frames of both RGB
and thermal modes and the segmentation results of various
models. We highlight the details with the yellow boxes.
Obviously, the results from our MVNet model are more ac-
curate compared to the competing methods. We owe this to
the superiority of our method in engaging the advantages of
complementary multispectral and temporal contexts. In ad-
dition, these visualizations of different scenarios also show-
case the diversity of our MVSeg dataset, which is expected
to provide a sufficiently realistic benchmark in this field.

To give an intuitive view, we also generate a video demo
as in our github website. It is shown that the incorporation
of multispectral video information can help produce more
reliable and robust segmentation results when facing diverse
lighting conditions. In addition, we find that the accuracy of
MVSS model still has a large room for improvement, which



Table 4. Quantitative evaluation on the validation set of MVSeg
dataset. The notation † and ‡ are used to mark the VSS and MSS
models, respectively.

Method Backbone mIoU(%)
CCNet [12] ResNet-50 50.90
OCRNet [38] ResNet-50 51.99
STM† [28] ResNet-50 52.55
LMANet† [29] ResNet-50 52.69
MFNet‡ [9] Mini-inception 51.17
RTFNet‡ [33] ResNet-152 52.65
EGFNet‡ [40] ResNet-152 52.73
FCN [26] ResNet-50 50.32
MVNetFCN ResNet-50 53.05 (+2.73)
PSPNet [39] ResNet-50 50.58
MVNetPSPNet ResNet-50 53.43 (+2.85)
DeepLabv3+ [1] ResNet-50 50.77
MVNetDeepLabv3+ ResNet-50 53.30 (+2.53)

is deserved to be explored in future works.

RGB Frame Optical Flow RGB Frame Optical Flow
Figure 1. Visualizations of the estimated optical flow on MVSeg
benchmark, where we adopt the widely-used RAFT model [34]
following the standard protocol of [27].

6. Discussion
Here we discuss five potential research problems on

the proposed multispectral video semantic segmentation.
Meanwhile, some feasible solutions are given for reference.

i) Accuracy: The research of MVSS is still in its ini-
tial stage. By drawing ideas from the well-studied seman-
tic segmentation of RGB images, the accuracy of MVSS
model can be further advanced. For example, we may in-
tegrate the multi-scale learning technique [1, 30, 36] into
cross-spectral and cross-frame fusion to improve the con-
textual representability of MVSS models; we may also in-
troduce extra edge signals [16,23] to help the model capture
object boundary details. In addition, it is worth exploring
more advanced fusion techniques [17, 22, 40] to promote
sufficient interactions among multimodal information.

ii) Efficiency: Although the engagement of multispectral
videos brings significant improvement, it introduces addi-
tional model parameters. More lightweight models need to
be explored to improve efficiency. For example, we can
adopt more lightweight operations such as depthwise sep-
arable convolution [4] or neural architecture search tech-

niques [24], to advance feature extractors. On the other
hand, we may explore knowledge distillation scheme [11]
to transfer thermal knowledge to RGB stream, which can
avoid the heavy overhead of thermal encoder.

iii) Evaluation Metrics. Due to the challenging scenes in
MVSeg benchmark, the popular TC metric [25] that eval-
uates temporal consistency based on optical flow warping
may not correctly reflect the performance of MVSS mod-
els. As illustrated in Fig. 1, the estimated optical flows of
complex nighttime scenes is not meaningful, which cannot
well represent the motions of objects in the scene, e.g., the
less-visible driving cars in dim night. Thus, how to design
suitable metrics for MVSS is still an open issue.

iv) Weak Supervision. The acquirement of per-pixel se-
mantic labels is laborious and time-consuming. Thus, train-
ing MVSS models with weak supervisions [3, 15, 19, 21]
(e.g., image-level category, bounding box) is an appealing
future direction, which can avoid heavy annotation costs.

v) Instance-level Extension. As described in [37], video
instance segmentation is more crucial than object-level se-
mantic segmentation for practical applications [8,18]. Thus,
the research on multispectral video instance segmentation is
an essential future direction. Moving forward, we will pri-
oritize our efforts to further explore this area.
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Table 5. The quantitative results on each class of the MVSeg benchmark test set. ‘Deep3+’ is the shorthand for DeepLabv3+ [1].

*
CCNet OCRNet STM LMANet MFNet RTFNet EGFNet FCN MVNet PSPNet MVNet Deep3+ MVNet

[12] [38] [28] [29] [9] [33] [40] [26] (FCN) [39] (PSPNet) [1] (Deep3+)
Background 38.40 40.39 39.13 36.63 36.21 34.31 34.48 36.00 35.38 34.37 39.79 35.09 39.79
Car 79.75 81.82 79.59 81.35 80.54 81.43 80.77 78.64 81.39 80.74 81.45 80.66 80.98
Bus 36.82 37.53 34.59 36.48 40.03 35.66 41.61 36.42 37.40 39.69 38.95 36.87 31.50
Motorcycle 29.78 36.02 32.94 36.57 31.59 32.34 33.41 30.92 33.78 32.66 36.42 37.40 35.39
Bicycle 60.04 62.60 60.17 57.67 53.89 55.12 61.41 52.56 60.70 54.71 59.59 55.24 65.34
Pedestrian 55.00 55.59 54.05 58.95 58.04 61.76 61.75 52.36 61.63 57.39 59.18 54.46 58.30
Motorcyclist 4.1 4.43 3.33 12.23 6.22 13.83 11.88 8.8 10.00 4.32 8.12 6.32 8.22
Bicyclist 27.21 25.48 25.52 32.08 26.06 30.64 31.75 23.27 33.27 29.28 30.10 33.43 35.95
Cart 49.22 58.00 54.17 46.41 49.73 50.60 54.17 48.93 50.97 57.25 56.07 50.42 58.40
Bench 59.64 53.18 58.05 51.95 51.54 55.57 54.22 59.72 54.31 54.46 56.90 33.94 50.39
Umbrella 40.72 42.97 45.68 34.32 36.07 45.95 44.75 33.83 43.19 37.70 47.67 43.83 45.05
Box 36.66 37.87 38.98 39.69 40.11 37.83 38.79 37.70 41.53 37.81 39.00 37.83 41.85
Pole 51.12 50.33 54.12 49.01 46.31 44.39 45.57 49.19 51.44 45.62 55.36 51.36 53.33
Street Lamp 49.50 56.84 61.41 55.45 53.50 58.11 50.74 54.91 62.13 57.19 59.98 53.63 59.79
Traffic Light 35.68 28.54 40.93 36.80 36.86 37.71 35.67 37.27 43.37 35.53 39.24 39.10 42.30
Traffic Sign 35.91 37.24 43.25 41.12 37.38 36.53 44.11 38.10 40.84 40.18 42.58 39.29 41.22
Car Stop 35.63 37.25 32.36 33.34 34.37 33.91 35.50 35.26 34.95 29.77 34.53 32.99 35.88
Color Cone 22.56 20.12 22.07 24.52 18.19 15.84 21.02 4.8 13.87 18.47 23.83 15.55 24.42
Sky 84.31 84.29 88.25 87.40 90.53 90.88 90.27 91.10 87.84 77.93 87.43 84.55 88.02
Ground 86.43 88.04 78.97 89.16 86.12 86.75 85.79 87.26 88.51 87.05 85.62 89.32 88.19
Road 90.45 89.79 88.52 90.99 90.85 90.73 90.70 90.27 91.24 90.32 91.10 91.32 91.23
Sidewalk 54.88 56.13 51.06 58.90 57.75 57.07 58.15 54.07 58.01 58.43 57.28 57.58 57.65
Curb 49.13 45.94 49.25 48.93 46.79 49.35 47.81 44.55 48.44 46.54 50.88 48.53 48.41
Terrain 77.37 76.69 75.24 76.27 77.94 78.67 79.06 75.63 78.70 76.69 75.71 77.75 78.03
Vegetation 78.37 78.31 78.41 77.74 79.09 80.24 79.92 79.57 80.07 75.81 79.34 78.52 80.14
Building 75.62 76.54 75.16 77.06 76.62 76.93 76.19 76.40 78.45 75.86 77.18 76.27 77.68
mean IoU (%) 51.70 52.38 52.51 52.73 51.63 52.77 53.44 50.67 53.90 51.38 54.36 51.59 54.52

Table 6. More quantitative evaluation on the test set of the MVSeg dataset. The notation † and ‡ stand for the VSS and MSS models,
respectively. ⋆ denotes transformer-based models that have input image with size 480×480.

Methods Backbone #Param(M) #Mem(G) Times(ms) mIoU(%)
CCNet [12] ResNet-50 52.3 4.9 10.3 51.70
OCRNet [38] ResNet-50 43.6 4.8 9.8 52.38
STM† [28] ResNet-50 44.1 21.9 11.2 52.51
LMANet† [29] ResNet-50 44.1 10.4 9.7 52.73
CFFM†⋆ [32] MiT-B1 15.5 13.3 14.1 52.83
MFNet‡ [9] Mini-inception 0.72 2.3 5.3 51.63
PSTNet‡ [31] ResNet-18 29.0 3.2 3.5 51.78
RTFNet‡ [33] ResNet-152 254.5 8.6 47.7 52.77
FEANet‡ [6] ResNet-152 255.2 8.7 34.3 53.19
EGFNet‡ [40] ResNet-152 123.2 6.3 75.8 53.44
DeepLabv3+ [1] ResNet-50 41.6 4.6 8.1 51.59
Ours (DeepLabv3+) ResNet-50 88.4 18.8 18.4 54.52
SegFormer⋆ [35] MiT-B1 13.8 4.0 7.9 51.11
Ours (SegFormer)⋆ MiT-B1 33.7 14.1 17.6 54.25
SegFormer⋆ [35] MiT-B2 24.8 4.6 13.7 53.07
Ours (SegFormer)⋆ MiT-B2 56.1 18.6 29.8 55.22
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Figure 2. Qualitative semantic segmentation results on the common daytime scenarios. From left to right: RGB frames, thermal infrared
(TIR) frames, results of DeepLabv3+ [1], LMANet [29], EGFNet [40] as well as our proposed MVNet, and ground truth of multispectral
video semantic segmentation. We highlight the improved details with the yellow boxes. Best viewed in color and zoom in.
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Figure 3. Qualitative semantic segmentation results on the nighttime & dim light scenario. From left to right: RGB frames, thermal infrared
(TIR) frames, results of DeepLabv3+ [1], LMANet [29], EGFNet [40] as well as our proposed MVNet, and ground truth of multispectral
video semantic segmentation. We highlight the improved details with the yellow boxes. Best viewed in color and zoom in.
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Figure 4. Qualitative semantic segmentation results on the nighttime & overexposure scenario. From left to right: RGB frames, thermal
infrared (TIR) frames, results of DeepLabv3+ [1], LMANet [29], EGFNet [40] as well as our proposed MVNet, and ground truth of
multispectral video semantic segmentation. We highlight the improved details with the yellow boxes. Best viewed in color and zoom in.
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Figure 5. Qualitative semantic segmentation results on the rainy scenario. From left to right: RGB frames, thermal infrared (TIR) frames,
results of DeepLabv3+ [1], LMANet [29], EGFNet [40] as well as our proposed MVNet, and ground truth of multispectral video semantic
segmentation. We highlight the improved details with the yellow boxes. Best viewed in color and zoom in.
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Figure 6. Qualitative semantic segmentation results on the snowy scenario. From left to right: RGB frames, thermal infrared (TIR) frames,
results of DeepLabv3+ [1], LMANet [29], EGFNet [40] as well as our proposed MVNet, and ground truth of multispectral video semantic
segmentation. We highlight the improved details with the yellow boxes. Best viewed in color and zoom in.
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