
Supplementary Material for
Think Twice before Driving:

Towards Scalable Decoders for End-to-End Autonomous Driving

Xiaosong Jia1,2, Penghao Wu2,3, Li Chen2, Jiangwei Xie4, Conghui He2, Junchi Yan1,2† , Hongyang Li2,1†

1 Shanghai Jiao Tong University 2 Shanghai AI Laboratory
3 University of California at San Diego 4 SenseTime Research

†Correspondence authors

1. Implementation Details
Since an end-to-end autonomous driving model is a large

system, we provide details of our implementation so that it
is easier for the community to reproduce. We will make the
code and model publicly available.

1.1. Data Collection

We use Roach [24] as the expert with a collision detector
for emergency stop similar to [22]. We set the following
sensors:

We set four cameras with field of view (FOV) 150◦:
Front (x=1.5, y=0.0, z=2.5, yaw=0◦), Left (x=0.0, y=-0.3,
z=2.5,yaw=−90◦), Right (x=0.0, y=0.3, z=2.5, yaw=90◦),
Back(x=-1.6, y=0.0, z=2.5, yaw=180◦) where the afore-
mentioned coordinate and angle are all in the ego coordinate
system. The output of each camera is a 900x1600 RGB
image. Since Carla [7] simulates the Brown-Conrady dis-
tortion [5], we estimate the distortion parameter with the
code of [21]. The estimated parameter for the distortion
is (0.00888296, -0.00130899, 0.00012061, -0.00338673,
0.00028834) and we use the parameter to calibrate images
before we feed them into the neural network. We also col-
lected the depth and semantic segmentation label of images.

We set one Lidar with 64 channels, upper FOV 10◦,
lower FOV −20◦, and frequency 10Hz, following the of-
ficial protocol. We set it at (x=0.0, y=0.0, z=2.5, yaw=0◦).

We set an IMU to estimate the yaw angle, acceleration,
and angular velocity of the ego vehicle. We set a GPS to
estimate current world coordinate of the ego vehicle and a
speedometer to estimate current speed of the ego vehicle.

Following the official setting, we also save the target
point which might be hundreds meters away as well high-
level commands (keep straight, turn left, turn right, etc) pro-
vided by the protocol.

As for additional supervision signals, we save the value
function, BEV feature maps of different resolution, the 1D

feature as well as the control actions of Roach.
We convert all raw data into the ego coordinate system.

1.2. Models

Our code is based on OpenMMLab [6] with Py-
torch [17], where we use their official implementation of
backbones and cooresponding ImageNet pretrained weights
if applicable. We use ResNet50 [8] as the image backbone.
For the extra data settings, we use ConvNext-base [14]. We
use the PAFPN [13] to obtain the multi-scale image fea-
tures. As for the LSS [18] and depth module, we adopt
the code from [12]. For the semantic segmentation mod-
ule, we use a U-Net [19]-like structure. We downsam-
ple all images to 450x800 to save GPU memory. We use
the BEV grid of 21x21 for low computational burden and
set the scale as (Front=30.4m, Back=-8.0m, Left=-19.2m,
Right=19.2m) which matches with the scale of Roach. We
use 2 frames as the input while for the extra data settings
we use 3 frames. For the Lidar model, we use the SEC-
OND [23] implemented by mmdetection3D which consists
of HardSimpleVFE, SparseEncoder, SECOND, and SEC-
ONDFPN. For the decoder, we have described details in the
main text. For the extra data setting, we train 3 heads to
further enlarge the capacity of the decoder.

1.3. Hyper-Parameters

We use AdamW [16] optimizer with the learning rate 1e-
4, cosine learning rate decay, effective batch size 128, and
weight decay 1e-7. We train the model for 60 epochs. For
hidden dimensions, we use 256 at most places. For loss
weights, we tune them to make sure that each loss is around
1 at the beginning of training.

1.4. Other Details

For data augmentation which we only apply on images,
we use the random color transformation similar to [22] and



Method Encoder Decoder Modality #Parameters MACs (G) GPU Memory

CILRS [4] ResNet + Flatten MLP C1 23.4M 1.4 1507M
LBC [2] ResNet + Flatten MLP C3 23.1M 5.4 1627M
Transfuser [3] Fusion via Transformer GRU C3L1 165.8M 34.9 2755M
Roach [24] ResNet + Flatten MLP C1 23.4M 17.1 2171M
LAV [1] PointPaiting Multi-layer GRUs C4L1 27.5M 45.5 2493M
TCP [22] ResNet + Flatten GRU C1 25.8M 17.1 2177M
MILE [9] ResNet + Flatten GRU C1 54.1M 11.2 2485M
Interfuser [20] Fusion via Transformer Transformer + GRU C3L1 82.8M 46.5 1823M
ThinkTwice Geometric Fusion in BEV Look-Predict-Refine C4L1 120.2M 1170+45 4019M

Table 1. Comparison of Computational Burden MACs and #Parameters are calculated by the Python package thop. MACs and GPU
memory is calculated under the inference mode of models. For ThinkTwice, the MACs is 1170G for the encoder (LSS module = 1157G)
For Modality, C denotes the camera sensor and L denotes the Lidar sensor.

random crop before we project image features to the BEV
grid. We stop the augmentation at the last ten epochs. The
prediction time-horizon is 4. We apply gradient clip based
on the L2 norm with the threshold of 35.

2. Discussion about Inference Computation

For the deployment of autonomous driving models, dif-
ferent from running on the cluster, they are usually run-
ning on edge devices with limited computational power and
memory. Thus, it is important to discuss about the com-
putation requirement and the memory footprint of different
models during inference. Since few existing works give the
computation related statistics in their papers, we run their
official code to obtain an estimation. Note that all mod-
els are under their officially suggested environment, which
means the version of packages such as Pytorch, Cuda,
Carla, Numpy, OpenCV, etc may have some influence. All
models are running under the same server with an RTX
3090 GPU. The estimation are in the Table 1. We could ob-
serve that ThinkTwice has large MACs and GPU memory
usage. It is because ThinkTwice is the only model adopts
geometric fusion in BEV - specifically, LSS [18] which re-
quires 1153G MACs during the inference. We adopt it since
the BEV representation inherently preserves the spatial re-
lationships on the ground plane, making it preferable for
joint perception-planning and sensor fusion. From Table 4
in the main text, we could observe that simply combining
the BEV representation with TCP [22] could achieve59 DS
and the performance could be further enhanced to 65 DS
with the proposed coarse-to-fine decoder. Actually, learn-
ing BEV representation is a heated topic in both industry
and academia. To reduce the heavy computational bur-
den of BEV-based model, more efficient implementations
have been proposed in BEVFusion [15], BEVDepth [12],
BEVStereo [11], BEV-Pool-V2 [10], etc. Specifically de-
signed edge devices and chips are also actively explored by
the industry.

3. Visualization
We visualize different layers of predictions in the Fig. 1.

We can observe that with the future conditioned coarse-to-
fine refinement, the driving process is safer and smoother.
We also provide a video in the supplemental materials with
diverse scenarios about the driving process of ThinkTwice.

References
[1] Dian Chen and Philipp Krähenbühl. Learning from all vehi-

cles. In CVPR, 2022. 2
[2] Dian Chen, Brady Zhou, Vladlen Koltun, and Philipp

Krähenbühl. Learning by cheating. In Conference on Robot
Learning, pages 66–75. PMLR, 2020. 2

[3] Kashyap Chitta, Aditya Prakash, Bernhard Jaeger, Zehao
Yu, Katrin Renz, and Andreas Geiger. Transfuser: Imita-
tion with transformer-based sensor fusion for autonomous
driving. Pattern Analysis and Machine Intelligence (PAMI),
2022. 2

[4] Felipe Codevilla, Eder Santana, Antonio M López, and
Adrien Gaidon. Exploring the limitations of behavior
cloning for autonomous driving. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pages 9329–9338, 2019. 2

[5] A. E. Conrady. Decentred Lens-Systems. Monthly Notices
of the Royal Astronomical Society, 79(5):384–390, 03 1919.
1

[6] MMCV Contributors. MMCV: OpenMMLab computer
vision foundation. https://github.com/open-
mmlab/mmcv, 2018. 1

[7] Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio
Lopez, and Vladlen Koltun. CARLA: An open urban driving
simulator. In Proceedings of the 1st Annual Conference on
Robot Learning, pages 1–16, 2017. 1

[8] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 1

[9] Anthony Hu, Gianluca Corrado, Nicolas Griffiths, Zak
Murez, Corina Gurau, Hudson Yeo, Alex Kendall, Roberto
Cipolla, and Jamie Shotton. Model-based imitation learning
for urban driving. arXiv preprint arXiv:2210.07729, 2022. 2

https://github.com/open-mmlab/mmcv
https://github.com/open-mmlab/mmcv


(a) Quarter Turn. It is a common failure case due to its sharp turn angle.
Here, the refined trajectory has a more accurate turning route.

(b) Emergency Stop. For the jay-walker with the nearby vehicle’s occlu-
sion, the refined trajectory leads to a deacceleration compared to the original
one.

(c) Merge. The refined trajectory leaves more advance for the merging,
which leads to a safer and smoother driving.

(d) Lane Changing. The refined trajectory notices the jay-walker and leads
to a emergency stop during the lane-changing process.

Figure 1. Visualization for the predictions from different layers of decoder. Larger and brighter dots are from deeper layers.

[10] Junjie Huang and Guan Huang. Bevpoolv2: A cutting-edge
implementation of bevdet toward deployment. arXiv preprint
arXiv:2211.17111, 2022. 2

[11] Yinhao Li, Han Bao, Zheng Ge, Jinrong Yang, Jianjian Sun,
and Zeming Li. Bevstereo: Enhancing depth estimation
in multi-view 3d object detection with dynamic temporal
stereo. arXiv preprint arXiv:2209.10248, 2022. 2

[12] Yinhao Li, Zheng Ge, Guanyi Yu, Jinrong Yang, Zengran
Wang, Yukang Shi, Jianjian Sun, and Zeming Li. Bevdepth:
Acquisition of reliable depth for multi-view 3d object detec-
tion. arXiv preprint arXiv:2206.10092, 2022. 1, 2

[13] Shu Liu, Lu Qi, Haifang Qin, Jianping Shi, and Jiaya Jia.
Path aggregation network for instance segmentation. In Pro-
ceedings of the IEEE conference on computer vision and pat-
tern recognition, pages 8759–8768, 2018. 1

[14] Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feicht-
enhofer, Trevor Darrell, and Saining Xie. A convnet for the
2020s. Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2022. 1

[15] Zhijian Liu, Haotian Tang, Alexander Amini, Xinyu Yang,
Huizi Mao, Daniela Rus, and Song Han. Bevfusion: Multi-
task multi-sensor fusion with unified bird’s-eye view repre-
sentation. arXiv preprint arXiv:2205.13542, 2022. 2

[16] Ilya Loshchilov and Frank Hutter. Decoupled weight de-
cay regularization. In International Conference on Learning
Representations, 2018. 1

[17] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An im-
perative style, high-performance deep learning library. Ad-
vances in neural information processing systems, 32, 2019.
1

[18] Jonah Philion and Sanja Fidler. Lift, splat, shoot: Encoding
images from arbitrary camera rigs by implicitly unprojecting
to 3d. In European Conference on Computer Vision, pages
194–210. Springer, 2020. 1, 2

[19] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-
net: Convolutional networks for biomedical image segmen-
tation. In International Conference on Medical image com-
puting and computer-assisted intervention, pages 234–241.
Springer, 2015. 1

[20] Hao Shao, Letian Wang, RuoBing Chen, Hongsheng Li,
and Yu Liu. Safety-enhanced autonomous driving us-
ing interpretable sensor fusion transformer. arXiv preprint
arXiv:2207.14024, 2022. 2

[21] Abanob Soliman, Fabien Bonardi, Désiré Sidibé, and Samia
Bouchafa. IBISCape: A simulated benchmark for multi-



modal SLAM systems evaluation in large-scale dynamic
environments. Journal of Intelligent & Robotic Systems,
106(3):53, Oct 2022. 1

[22] Penghao Wu, Xiaosong Jia, Li Chen, Junchi Yan, Hongyang
Li, and Yu Qiao. Trajectory-guided control prediction for
end-to-end autonomous driving: A simple yet strong base-
line. Conference on Neural Information Processing Systems
(NeurIPS), 2022. 1, 2

[23] Yan Yan, Yuxing Mao, and Bo Li. Second: Sparsely embed-
ded convolutional detection. Sensors, 18(10):3337, 2018. 1

[24] Zhejun Zhang, Alexander Liniger, Dengxin Dai, Fisher Yu,
and Luc Van Gool. End-to-end urban driving by imitat-
ing a reinforcement learning coach. In Proceedings of the
IEEE/CVF International Conference on Computer Vision
(ICCV), 2021. 1, 2


	. Implementation Details
	. Data Collection
	. Models
	. Hyper-Parameters
	. Other Details

	. Discussion about Inference Computation
	. Visualization

