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Derivation of equation (2)
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Here, Q relates to the estimation of the approximate probability distribution and P to prior net. The loss function for the mesh
vertices in equation (3) is derived as follows, by maximising P
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For supervised training, we introduce the ground truth into our probabilistic model. In the following equations, we use the
caret to mark ground truth. By introducing ground truth, we have:
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Derivation of the loss function equation (3) for the mesh vertices
Considering the above components in turn, we assume that V̄ i,m

3D ∼ N (µm
ϕ , (σm

ϕ )2) and we have
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Combining these, our loss function becomes:

LV3D =
∑
m

[
1

2

(
V̄ i,m
3D − µm

ϕ

σm
ϕ

)2

+ ln
(√

2πσm
ϕ

)]
+

1

2

[
ln
∏
m

σm
v

σm
ϕ

− d+
∑
m

σm
ϕ +

(
µm
v − µm

ϕ

)2
σm
v

]
(6)

Derivation of the loss function equation (4) for the camera parameters
The loss function for the camera parameters in equation (4) is derived as follows:
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C̄i is the camera ground truth. Since we do not have a pre-trained priornet of the camera model, we create the camera priornet
by using the ground truth as the mean and the identity matrix as the variance. We have
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Combining these, we have:
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and our loss function becomes:
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Derivation of the loss function equation (5) for the 3D joints
The loss function for the 3D joints in equation (5) is derived as follows, by maximising P
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Considering the components in turn, we assume that J̄ i,k
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Combining these, our loss function becomes:
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Derivation of the loss function equation (6) for the 2D joints
The loss function for the 2D joints in equation (6) is derived as follows, by maximising P
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where Sk(x) = (sBxR+ T )k and
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The second last step of this derivation used Jensen’s inequality with a strictly concave function. ELBO denotes Evidence
Lower Bound, which means we can maximize our log likelihood function by maximizing ELBO. Q (J3D, V3D, C) is an ap-
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where DKL [Q ∥ P ] denotes the Kullback–Leibler divergence which measures how the approximate probability distribution
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where B ∈ RK×V is a pre-defined regression matrix described in section 2.1 and ϕ, γ ∈ θ are the variational parameters.
Then we have:
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Figure 1. The detailed pipeline for supervised training. Here, µϕ, σϕ ∈ R778×3 are outputs of AMVUR. µv ∈ R778×3 is an output of the
MANO Layer, and σv ∈ R778×3 is equal to 1. B ∈ RK×V is a pre-defined regression matrix from the MANO model. µ2D = sBµϕR+T ,
σ2D = sBσϕR+T , µ2Dprior = sBµvR+T and σ2Dprior = sBσvR+T . s,B and R are camera parameters obtained from the Camera
Model.
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(25)

where the mean µϕ and variance σϕ of the approximate probability distribution of Q
(
J3D|V3D, J i

2D;ϕ
)

are outputs of two
multilayer perceptron (MLP) nerual networks with ϕ ∈ θ. The mean µγ and variance σγ of the approximate probability
distribution of Q

(
C|J i

2D, Ii; γ
)

are outputs of two multilayer perceptron (MLP) neural networks with γ ∈ θ. µv and σv are
the mean and variance of the prior probability distribution N (µv, diag (1)) estimated from MANO model. Our DKL loss
penalizes differences between the posterior distribution Q and the prior distribution P . During training, this KL loss pulls
the posterior distribution and the prior distribution towards each other.
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Figure 2. The detailed pipeline of weakly supervised training. Here, µϕ, σϕ, µv and σv ∈ R778×3. µϕ, σϕ are output of AMVUR. µv is
output of MANO Layer, σv is equal to 1. µC , σC , µγ and σγ ∈ R10. µC is the output of pre-trained S2HAND, σC is equal to 1. µγ

and σγ are output of our Camera Model. B ∈ RK×V is a pre-defined regression matrix from the MANO model. µ2D = sBµϕR + T ,
σ2D = sBσϕR+T , µ2Dprior = sBµvR+T and σ2Dprior = sBσvR+T . s,B and R are camera parameters obtained from the Camera
Model.

Table 1. Network architecture and configurations of the proposed model. MLP is multilayer perceptron

Stage Configuration Output
0 Input image 224×224×3

Feature extraction
1 Resnet50(shallow) [1] 112×112×64
1 Resnet50(global) [1] 2048×1

Prior-Net
2 MLP(Pose+shape) 48
2 MANO layer(mean) 778×3

AMVUR(see Section 3.3 for more detail)
3 Positional encoding 799×2051
3 cross-attention 778×512
3 self-attention(mean+variance) 778×3×2

Camera Model
4 MLP(mean of Rotation, Translation and Scale) 10
4 MLP(variance of Rotation, Translation and Scale) 10

Texture Regression(see Section 3.4 for more detail)
6 Occlusion-aware Rasterization V2D ,M,triangle barycentric
6 Reverse Interpolation 778×2112
6 Positional encoding 778×2115
6 Self-attention 778×3
6 Interpolation 224×224×3
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Training algorithm for supervised training

Algorithm 1 Training algorithm for supervised training.
Input: Image I; MANO layer and regression matrix B; Ground-truth: 3D Vertices V̄3D , Camera parameters C̄, 2D Joints J̄2D

1: for epoch e ≤ E do
2: for each image batch do
3: Extract a global feature vector F from our ResNet50 [1] for each image
4: Send F to Camera Model to generate Camera Parameters distribution N (µγ , diag (1)), s,R, T ∈ γ
5: Send F to Prior-net to generate 3D vertices distribution N (µv, diag (1))), 3D joints distribution N (Bµv, Bdiag (1))) and 2D

joints distribution N (sBµvR+ T, sBdiag (1)) + T )
6: Send F to AMVUR to generate 3D vertices distribution N (µϕ, diag (σϕ)), 3D joints distribution

N (Bµϕ, Bdiag (, diag (σϕ)))) and 2D joints distribution N (sBµϕR+ T, sBdiag (diag (σϕ)))R+ T )
7: Compute loss equations 3-6
8: Update model weights
9: end for

10: end for

Training algorithm for weakly supervised training

Algorithm 2 Training algorithm for weakly supervised training.
Input: Image I; MANO layer and regression matrix B; Ground-truth: 2D Joints J̄2D

1: for epoch e ≤ E do
2: for each image batch do
3: Extract a global feature vector F from EfficientNet-B0 [2] for each image
4: Send F to Camera Model to generate Camera Parameters distribution N (µγ , diag (1))
5: Sample s,R,T from the distribution N (µγ , diag (1))
6: Send F to Prior-net to generate 3D vertices distribution N (µv, diag (σv))), 3D joints distribution N (Bµv, Bdiag (σ(v))))

and 2D joints distribution N (sBµvR+ T, sBdiag (σ(v))) + T )
7: Sample 3D vertices,3D joints and 2D joints from the above distribution generated by the Prior-net
8: Send F to AMVUR to generate 3D vertices distribution N (µϕ, diag (σϕ)), 3D joints distribution N (Bµϕ, Bdiag (σϕ))) and

2D joints distribution N (sBµϕR+ T, sBdiag (σϕ))R+ T )
9: Sample 3D vertices,3D joints and 2D joints from the above distribution generated by the AMVUR

10: Compute loss equation 8
11: Update model weights
12: end for
13: end for

Testing algorithm for supervised and weakly supervised testing

Algorithm 3 Testing algorithm for weakly supervised training.
Input: Image I; MANO layer and regression matrix B; 2D Joints J̄2D

1: for each image batch do
2: Extract a global feature vector F from our backbone Convolutional Neural Network (CNN) for each image
3: Send F to Camera Model to generate Camera Parameters distribution N (µγ , diag (1))
4: Output µγ

5: Send F to AMVUR to generate 3D vertices distribution N (µϕ, diag (σϕ)), 3D joints distribution N (Bµϕ, Bdiag (σϕ))) and 2D
joints distribution N (sBµϕR+ T, sBdiag (σϕ))R+ T )

6: Output µϕ, Bµϕ and sBµϕR+ T
7: end for
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Training algorithm for Texture Regression

Algorithm 4 Training algorithm for Texture Regression.
Input: Image I; Our probabilistic model trained by above supervised or weakly supervised strategies

1: for epoch e ≤ E do
2: for each image batch do
3: Extract a global feature vector F and a shallow feature vector Fmap from our backbone Convolutional Neural Network (CNN)

for each image
4: Send F to Camera Model to generate Camera Parameters distribution N (µγ , diag (1))
5: Output µγ

6: Send F to AMVUR to generate 3D vertices distribution N (µϕ, diag (σϕ)), 3D joints distribution N (Bµϕ, Bdiag (σϕ))) and
2D joints distribution N (sBµϕR+ T, sBdiag (σϕ))R+ T )

7: Output µϕ, Bµϕ and sBµϕR+ T
8: Concatenate F and Fmap, followed by Reverse Interpolation for generating 3D vertex feature.
9: Send Vertex feature to Positional encoding, follow by a self-attention for generating 3D vertex RGB

10: Send µγ and µϕ to Occlusion-aware Rasterization and obtain V2D ,M,triangle barycentric
11: send 3D vertex RGB and the triangle barycentric to Interpolation to generate 2D rendered hand
12: Compute loss in equation 12
13: Update model weights
14: end for
15: end for

Training for prior-net individually

Algorithm 5 Training for prior-net individually
Input: Image I; MANO layer and regression matrix B; Ground-truth: 3D Vertices V̄3D , Camera parameters C̄, 2D Joints J̄2D for

supervised, and only 2D Joints J̄2D for weakly supervised
1: for epoch e ≤ E do
2: for each image batch do
3: Extract a global feature vector F from backbone CNN for each image
4: Send F to Camera Model to generate Camera Parameters
5: Send F to Prior-net to generate 3D vertices, 3D joints and 2D joints
6: For supervised, compute L2 loss on 3D Vertices, Camera parameters and 2D Joints. For weakly supervised, compute L2 loss on

2D joints only
7: Update model weights
8: end for
9: end for

Training for AMVUR individually

Algorithm 6 Training for AMVUR individually
Input: Image I; MANO layer and regression matrix B; Ground-truth: 3D Vertices V̄3D , Camera parameters C̄, 2D Joints J̄2D for

supervised, and only 2D Joints J̄2D for weakly supervised
1: for epoch e ≤ E do
2: for each image batch do
3: Extract a global feature vector F from backbone CNN for each image
4: Send F to Camera Model to generate Camera Parameters
5: Send F to AMVUR to generate 3D vertices, 3D joints and 2D joints
6: For supervised, compute L2 loss on 3D Vertices, Camera parameters and 2D Joints. For weakly supervised, compute L2 loss on

2D joints only
7: Update model weights
8: end for
9: end for
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Table 2. Hand reconstruction performance compared with state-of-the-art methods on FreiHAND testing dataset after Procrustes alignment.
[4]⋆ additionally uses 40,000+ synthetic images and 3D annotations of RHD dataset for training.

Training Scheme Method Category AUCJ ↑ MPJPE↓ AUCV ↑ MPVPE↓ F5 ↑ F15 ↑

Supervised

Hasson et al. [5] Model-based 0.74 13.3 0.74 13.3 0.43 0.91
FreiHAND [3] Model-based 0.35 35.0 0.74 13.2 0.43 0.90
Boukhayma et al. [6] Model-based 0.78 11.0 0.78 10.9 0.52 0.93
Qian et al. [7] Model-based 0.78 11.1 0.78 11.0 0.51 0.93
I2L-MeshNet [8] Model-free - 7.4 - 7.6 0.681 0.973
Pose2Mesh [9] Model-free - 7.7 - 7.8 0.674 0.969
METRO [10] Model-free - 6.5 - 6.3 0.731 0.984
Chen et al. [11] Model-free - 6.1 - 6.2 0.760 0.984
Ours(final) Probabilistic 0.89 6.2 0.89 6.1 0.767 0.987

Weakly-Supervised
S2HAND [12] Model-based 0.730 - 0.725 - 0.42 0.89
MANO Fit [3] Model-based 0.730 13.7 0.729 13.7 0.439 0.892
BMC [4] ⋆ Model-based 0.780 11.3 - - - -
Ours(final) Probabilistic 0.796 10.8 0.792 10.9 0.517 0.943

Results
FreiHand

FreiHAND [3] is a large-scale 3D hand dataset that contains 130,240 training images and 3,960 testing images. Each
training image has a green screen background or a synthetic background. Testing images are collected in controlled outdoor
and office environments, which makes this dataset less challenging than the HO3Dv2 and v3 datasets. Experimental results
and comparison with the state of the art approaches are shown in Table 2.

HO3Dv2

Experimental results of our model evaluated on the HO3Dv2 dataset are shown for qualitative comparison of the mesh
reconstruction with the state of the art approaches in figures 3 and 4, and of texture reconstruction in figures 5 and 6.

Bayesian vs. L1/L2

To better guide our proposed AMVUR model during training, our probabilistic model takes the MANO parametric model
as a prior-net and AMVUR estimates the probability distribution of mesh vertices conditioned on the prior-net. L1/L2 loss is
less able to capture the data distribution. KL-divergence allows our model to take into account the uncertainty and variability
in the hand, which is important for modeling complex and varied 3D meshes. Further, sampling from the distribution during
training of our probabilistic model allows the model to explore different variations of the mesh, leading to a more robust and
generalizable model. As shown in Tab.3, replacing KL-divergence with L2 leads to decreased performance.

Impact of camera parameter loss in Table 3

The results reported in Table 3 of the paper are calculated after Procrustes alignment, eliminating differences in the
underlying camera coordinate systems. As a result, the LV3D

and LJ3D
loss terms are sufficient to reconstruct the hand in

the wrist-relative coordinate system; the camera loss LC has no impact on performance. To provide additional context, the
ablation study in Tab.4 shows the impact of each loss term before Procrustes alignment, highlighting the impact of LC in this
setting.

Evaluation before Procrustes alignment

As reported in Tab.5, our probabilistic method achieves significant improvement over existing approaches in both super-
vised and weakly-supervised scenarios.
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