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1. Effectiveness of Alignment-aware Training
To further understand how much the alignment-aware

training improves NeRF’s performance, we quantitatively
analyze the performance of NeRF models trained with dif-
ferent training strategy. Concretely speaking, we set 9 mod-
els and each model are optimized with the same training
iterations. However, instead of adopting alignment-aware
training in the entire fine-tuning stage, we only include it
in a sub-stage and keep the standard training for the rest
time. The percentage of alignment-aware training itera-
tions in the total training iterations range from 0.1 to 0.9,
as shown in Fig. 1. By comparing three metrics, the ex-
periments demonstrate that longer alignment-aware training
strategy can consistently improve NeRF’s performance.

2. Detailed Experimental Results
To present detailed scores on each scene, we include the

expanded version of the main results on comparing the pro-
posed methods with the previous version, as shown in Ta-
ble 1 and 2. Meanwhile, we include depth map visualiza-
tion in the project pages: https://yifanjiang19.
github.io/alignerf.
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Figure 1. Analysis of the effectiveness made by alignment-aware training. We evaluate 9 models trained with different strategy. The
percentage of total training iterations shows how much the alignment-aware training strategy takes comparing to the whole fine-tuning
stage. Three metrics are reported and the results demonstrate that adopting more alignment-aware training can produce better NeRF
models.
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PSNR

Method bicycle flowers garden stump treehill
NeRF [5] 21.76 19.40 23.11 21.73 21.28
mip-NeRF [1] 21.69 19.31 23.16 23.10 21.21
Deep Blending [3] 21.09 18.13 23.61 24.08 20.80
Point-Based Neural Rendering [4] 21.64 19.28 22.50 23.90 20.98
Instant-NGP [6] 22.78 19.18 25.25 24.79 22.45
Stable View Synthesis [8] 22.79 20.15 25.99 24.39 21.72
mip-NeRF [1] w/bigger MLP 22.90 20.79 25.85 23.64 21.71
NeRF++ [9] w/bigger MLPs 23.75 21.11 25.91 25.48 22.77
mip-NeRF-360 [2] 24.46 21.45 26.94 26.40 22.53
Ours 24.75 21.61 27.07 26.69 22.63

SSIM

Method bicycle flowers garden stump treehill
NeRF [5] 0.455 0.376 0.546 0.453 0.459
NeRF w/ DONeRF [7] param. 0.454 0.379 0.542 0.522 0.461
mip-NeRF [1] 0.454 0.373 0.543 0.517 0.46
NeRF++ [9] 0.526 0.453 0.635 0.594 0.530
Deep Blending [3] 0.466 0.320 0.675 0.634 0.523
Point-Based Neural Rendering [4] 0.608 0.487 0.735 0.651 0.579
Instant-NGP [6] 0.540 0.378 0.709 0.654 0.546
Stable View Synthesis [8] 0.663 0.541 0.818 0.683 0.606
mip-NeRF [1] w/bigger MLP 0.612 0.514 0.777 0.643 0.577
NeRF++ [9] w/bigger MLPs 0.630 0.533 0.761 0.687 0.597
mip-NeRF-360 [2] 0.690 0.572 0.815 0.747 0.621
Ours 0.7052 0.588 0.825 0.765 0.632

LPIPS

Method bicycle flowers garden stump treehill
NeRF [5] 0.536 0.529 0.415 0.551 0.546
NeRF w/ DONeRF [7] param. 0.542 0.539 0.436 0.492 0.545
mip-NeRF [1] 0.541 0.535 0.422 0.490 0.538
NeRF++ [9] 0.455 0.466 0.331 0.416 0.466
Deep Blending [3] 0.377 0.476 0.231 0.351 0.383
Point-Based Neural Rendering [4] 0.313 0.372 0.197 0.303 0.325
Stable View Synthesis [8] 0.243 0.317 0.137 0.281 0.286
Instant-NGP [6] 0.397 0.441 0.255 0.339 0.420
mip-NeRF [1] w/bigger MLP 0.372 0.407 0.205 0.357 0.401
NeRF++ [9] w/bigger MLPs 0.356 0.395 0.223 0.328 0.386
mip-NeRF-360 [2] 0.293 0.348 0.165 0.254 0.337
Ours 0.285 0.323 0.152 0.236 0.320

Table 1. We present an expanded version of Table 3 in our main manuscript. We report the detailed scores on each scene separately, on the
low-resolution dataset (1280× 840).
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PSNR

Method Iterations
Standard Warped

bicycle flowers garden stump treehill bicycle flowers garden stump treehill
NeRF [5] 1x 21.30 18.89 22.92 23.02 21.50 - - - - -
mip-NeRF [1] 1x 21.33 18.96 22.72 22.96 20.82 - - - - -
mip-NeRF [1] bigger 1x 21.66 19.27 24.45 23.64 20.76 22.10 19.78 25.49 23.62 21.22
mip-NeRF-360 [2] 1x 23.68 20.83 25.83 26.25 21.96 24.38 21.63 27.31 26.81 22.78
Ours 1x 23.82 20.89 25.95 26.36 22.18 24.57 21.86 27.5 26.96 23.00
NeRF [5] 4x 21.49 19.02 23.19 23.19 21.09 - - - - -
mip-NeRF [1] 4x 21.56 19.23 23.12 23.18 21.10 - - - - -
mip-NeRF 360 [2] 4x 24.17 20.71 26.26 26.19 22.09 24.96 21.44 27.90 26.78 23.05
Ours 4x 24.47 20.94 26.43 26.53 22.42 25.44 21.92 28.25 27.18 23.32

SSIM

Method Iterations
Standard Warped

bicycle flowers garden stump treehill bicycle flowers garden stump treehill
NeRF [5] 1x 0.464 0.363 0.503 0.561 0.478 - - - - -
mip-NeRF [1] 1x 0.491 0.386 0.509 0.530 0.504 - - - - -
mip-NeRF [1] bigger 1x 0.534 0.431 0.678 0.634 0.549 0.568 0.471 0.733 0.656 0.597
mip-NeRF-360 [2] 1x 0.637 0.515 0.734 0.733 0.600 0.679 0.565 0.794 0.760 0.661
Ours 1x 0.640 0.521 0.738 0.739 0.605 0.684 0.579 0.801 0.767 0.667
NeRF [5] 4x 0.471 0.370 0.519 0.568 0.483 - - - - -
mip-NeRF [1] 4x 0.503 0.401 0.541 0.587 0.518 - - - - -
mip-NeRF 360 [2] 4x 0.669 0.530 0.764 0.744 0.617 0.714 0.579 0.827 0.773 0.693
Ours 4x 0.684 0.548 0.769 0.762 0.624 0.735 0.610 0.837 0.792 0.691

LPIPS

Method Iterations
Standard Warped

bicycle flowers garden stump treehill bicycle flowers garden stump treehill
NeRF [5] 1x 0.717 0.700 0.554 0.583 0.768 - - - - -
mip-NeRF [1] 1x 0.562 0.567 0.513 0.574 0.548 - - - - -
mip-NeRF [1] bigger 1x 0.493 0.506 0.324 0.434 0.475 0.480 0.494 0.301 0.429 0.459
mip-NeRF-360 [2] 1x 0.385 0.435 0.268 0.330 0.417 0.368 0.419 0.244 0.318 0.394
Ours 1x 0.381 0.424 0.262 0.341 0.416 0.357 0.399 0.232 0.318 0.389
NeRF [5] 4x 0.669 0.668 0.513 0.559 0.741 - - - - -
mip-NeRF [1] 4x 0.547 0.551 0.473 0.511 0.530 - - - - -
mip-NeRF 360 [2] 4x 0.348 0.421 0.232 0.310 0.384 0.332 0.406 0.210 0.300 0.351
Ours 4x 0.328 0.392 0.225 0.307 0.381 0.303 0.366 0.194 0.282 0.349

Table 2. We present an expanded version of Table 1 in our main manuscript. We report the detailed scores on each scene separately, on the
high-resolution dataset (2560× 1680).
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