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A. Data Pre-processing

Compared to standard annotation in COCO format, we need annotations of the instance masks Ek = {ek,i}Nk

i=1 together
with its sub-region masks, Ok = {ok,i}Nk

i=1, andMk = {mk,i}Nk

i=1. We don not need extra annotating for Ok = {ok,i}Nk

i=1,
Mk = {mk,i}Nk

i=1, which can be obtained by logical operations from Ek = {ek,i}Nk

i=1, as follows,

Ok = {ok,i}Nk

i=1 , ok,i = ek,i ∩ ek,j , j = 1, ...i− 1, i+ 1, ..., Nk

Mk = {mk,i}Nk

i=1 ,mk,i = ok,i ⊕ ek,i
(1)

B. Data Augmentation
We propose to extend the CPS dataset with instance-level data augmentation, which can be divided into two steps: instance

generation and image synthesis. In the first step, we build an isolated instance set and a clustered instance set. Then, we
generate a series of synthesized images based on the two instance banks controlling the instance popularity and distribution
(Algorithm 1).

C. Structure of Units
Figure 1 shows details of Concatenation Unit (CU), Fusion Unit (FU), Mergence Unit (MU), and Mask Head. Firstly, CU

is utilized to concate two extracted feature maps f c
k,i and froi

k,i , which contains rich semantic information and morphological
information, respectively. CU is composed of 3 convolution layers with the kernel size of 3×3 + ReLU. Secondly, FU is a key
component designed to recombine predictions of intersection, complement, and integral instances, which is also composed
of 3 convolution layers with the kernel size of 3×3 + ReLU. Then, MU in CRM is designed to merge intersection ôk,i masks
and complement m̂k,i masks, where they pass through a sigmoid function for normalization, and then through a pixel-level
Exclusive-OR operation, obtaining the merged mask êek,i. Finally, we illustrate the structure of the mask head adopted in Hi,
Ho, and Hm, which consists of 4 convolution layers with the kernel size of 3× 3, a deconvolution layer with the kernel size
of 2× 2, and a convolution layer for final prediction.

D. Comparison with State-of-the-arts
We provide more qualitative comparisons among our DoNet and other methods on CPS (Figure 2) and ISBI2014 (Figure

3) datasets. In addition, detailed results of the CPS dataset for every fold in terms of 6 metrics: TPp, FNo, mAP, Dice,
F1, and AJI are shown in Table 1-4. We also list the results on both categories of instances (cytoplasm and nuclei) and
their average value. Among these metrics, our DoNet not only achieves the best average performance, but also achieves the
best performance on each fold. After the adoption of data augmentation, DoNet continues to gain performance improve-
ments. Note that our model performs better on cytoplasm than on nucleus. This is because the main focus of our proposed
Decompose-and-Recombined strategy is on solving the overlapping problem in cytoplasm regions.



Algorithm 1: An synthetic pipeline for data augmentation

Input: Dataset D = {(Xk,Yk)}Kk=1 with annotations of instance categories
Ck = {ck,i}Nk

i=1, and instance masks Ek = {ek,i}Nk

i=1, total instance number
N = {ni}Nn

i=1, lowest ratio L = {li}NL

i=1, high ratioH = {hj}NH

j=1, and
transparency ratio rt.

Output: Da = {(Xp,Yp)}Pp=1.
1 Initialize two instance sets, SI = ∅ and SC = ∅;
2 for k = 1, ...,K do
3 for i = 1, ..., Nk do
4 Crop instance mask mk,i from Xk using ek,i;
5 SI ← SI ∪ {(mk,i, ek,i)} for isolated instances;
6 SC ← SC ∪ {(mk,i, ek,i)} for cluster instances;
7 end
8 end
9 for g = 1, ..., Nn do

10 for i = 1, ..., NL do
11 for j = i, ..., NH do
12 {xq}gq=1 ← Sample(SI , SC);
13 Geometric transformation: xt

q = T {xq}, T ∈ {rotation, scaling, affine};
14 Adjust the overlap ratio between (li, hj);
15 Adjust the transparency in the overlapping regions by rt;
16 end
17 end
18 end
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Figure 1. Structural designs CU, FU, MU, and Mask Head in DoNet.



(a) GT (b) MRCNN (c) ORCNN (d) SSP (e) CMRCNN (f) HTC (g) MSRCNN (h) DoNet (our)

Figure 2. Qualitative results of our DoNet and other SOTA methods on CPS dataset. (a) Ground Truth; (b) Mask R-CNN [4]; (c) Occlusion
R-CNN [3]; (d) Xiao et al. [6]; (e) Cascade R-CNN [1]; (f) Hybrid Task Cascade [2]; (g) Mask Scoring R-CNN [5]; (h) Our proposed
DoNet.
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Figure 3. Qualitative results of our DoNet and other SOTA methods on ISBI2014 dataset. (a) Ground Truth; (b) Mask R-CNN [4]; (c)
Occlusion R-CNN [3]; (d) Xiao et al. [6]; (e) Cascade R-CNN [1]; (f) Hybrid Task Cascade [2]; (g) Mask Scoring R-CNN [5]; (h) Our
proposed DoNet.



Table 1. Quantitative segmentation results of DoNet and other state-of-the-art methods on CPS dataset (mAP↑).

Methods
Cytoplasm Nuclei

Average
Fold1 Fold2 Fold3 Average Fold1 Fold2 Fold3 Average

Mask R-CNN [4] 63.48 57.35 56.83 59.22 ± 3.70 39.97 35.57 36.28 37.27 ± 2.36 48.24 ± 3.03
Cascade R-CNN [1] 62.10 55.62 55.72 57.81 ± 3.72 41.08 35.60 37.13 37.93 ± 2.83 47.87 ± 3.27

Mask Scoring R-CNN [5] 64.85 58.19 58.50 60.51 ± 3.76 38.50 33.55 36.73 36.26 ± 2.51 48.38 ± 3.13
HTC [2] 62.10 55.05 54.76 57.30 ± 4.16 41.08 35.23 37.36 37.89 ± 2.96 47.60 ± 3.56

Occlusion R-CNN [3] 63.66 58.04 56.87 59.52 ± 3.63 38.80 34.70 36.79 36.76 ± 2.05 48.14 ± 2.84
Xiao et al. [6] 63.84 57.61 57.57 59.67 ± 3.61 39.61 35.44 37.15 37.40 ± 2.10 48.53 ± 2.85

DoNet 66.20 59.95 58.23 61.46 ± 4.20 41.19 34.44 36.56 37.40 ± 3.45 49.43 ± 3.83
DoNet w/ Aug. 67.28 59.99 59.75 62.34 ± 4.28 40.05 34.77 36.06 36.96 ± 2.75 49.65 ± 3.52

Table 2. Quantitative segmentation results of DoNet and other state-of-the-art methods on CPS dataset (Dice↑).

Methods
Cytoplasm Nuclei

Average
Fold1 Fold2 Fold3 Average Fold1 Fold2 Fold3 Average

Mask R-CNN [4] 92.65 91.31 92.24 92.07 ± 0.68 86.11 86.36 86.74 86.40 ± 0.32 89.23 ± 0.50
Cascade R-CNN [1] 92.98 91.72 91.92 92.21 ± 0.67 86.36 86.05 86.43 86.28 0.20 ± 89.24 ± 0.44

Mask Scoring R-CNN [5] 92.77 92.16 91.93 92.29 ± 0.43 86.49 86.47 86.56 86.50 ± 0.05 89.39 ± 0.24
HTC [2] 92.98 91.59 91.72 92.10 ± 0.77 86.36 85.90 85.92 86.06 ± 0.26 89.08 ± 0.51

Occlusion R-CNN [3] 92.41 91.37 92.01 91.93 ± 0.53 86.20 86.27 86.20 86.22 ± 0.04 89.08 ± 0.28
Xiao et al. [6] 92.36 91.75 92.06 92.06 ± 0.31 86.53 86.37 86.71 86.53 ± 0.17 89.29 ± 0.24

DoNet 92.74 91.93 91.94 92.20 ± 0.46 86.87 86.91 86.83 86.87 ± 0.04 89.54 ± 0.25
DoNet w/ Aug. 93.08 91.97 92.08 92.38 ± 0.61 86.50 86.77 86.60 86.62 ± 0.14 89.50 ± 0.38

Table 3. Quantitative segmentation results of DoNet and other state-of-the-art methods on CPS dataset (F1↑).

Methods
Cytoplasm Nuclei

Average
Fold1 Fold2 Fold3 Average Fold1 Fold2 Fold3 Average

Mask R-CNN [4] 84.06 87.40 85.18 85.55 ± 1.70 88.95 82.30 83.57 84.94 ± 3.53 85.24 ± 2.62
Cascade R-CNN [1] 82.58 84.77 84.34 83.90 ± 1.16 85.15 81.01 82.15 82.77 ± 2.14 83.33 ± 1.65

Mask Scoring R-CNN [5] 82.61 85.15 83.33 83.70 ± 1.31 84.99 80.47 81.32 82.26 ± 2.40 82.98 ± 1.86
HTC [2] 82.58 82.21 80.71 81.83 ± 0.99 85.15 76.95 80.21 80.77 ± 4.13 81.30 ± 2.56

Occlusion R-CNN [3] 84.54 88.18 85.17 85.97 ± 1.94 87.93 82.73 85.59 85.42 ± 2.61 85.69 ± 2.28
Xiao et al. [6] 84.31 88.18 84.83 85.77 ± 2.10 88.68 82.88 83.88 85.15 ± 3.10 85.46 ± 2.60

DoNet 85.47 87.62 84.87 85.99 ± 1.44 88.55 82.21 84.37 85.04 ± 3.22 85.51 ± 2.33
DoNet w/ Aug. 87.42 88.63 86.37 87.47 ± 1.13 88.11 82.34 84.93 85.12 ± 2.89 86.30 ± 2.01

Table 4. Quantitative segmentation results of DoNet and other state-of-the-art methods on CPS dataset (AJI↑).

Methods
Cytoplasm Nuclei

Average
Fold1 Fold2 Fold3 Average Fold1 Fold2 Fold3 Average

Mask R-CNN [4] 74.32 78.84 75.23 76.13 ± 2.39 65.60 59.89 61.71 62.40 ± 2.92 69.27 ± 2.65
Cascade R-CNN [1] 74.76 78.13 74.91 75.93 ± 1.90 67.74 58.08 59.55 61.79 ± 5.20 68.86 ± 3.55

Mask Scoring R-CNN [5] 73.84 78.88 73.84 75.52 ± 2.91 61.56 57.66 58.92 59.38 ± 1.99 67.45 ± 2.45
HTC [2] 74.76 77.73 73.19 75.22 ± 2.31 60.72 53.97 57.77 57.49 ± 3.38 66.35 ± 2.84

Occlusion R-CNN [3] 75.60 79.78 75.05 76.81 ± 2.58 64.26 59.69 62.70 62.22 ± 2.32 69.51 ± 2.45
Xiao et al. [6] 74.55 79.81 74.80 76.39 ± 2.97 65.41 59.95 61.69 62.35 ± 2.79 69.37 ± 2.88

DoNet 76.29 79.84 75.64 77.26 ± 2.26 66.54 59.77 62.42 62.91 ± 3.41 70.08 ± 2.84
DoNet w/ Aug. 78.09 80.84 76.77 78.56 ± 2.08 64.78 59.69 63.17 62.55 ± 2.60 70.56 ± 2.34
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