
Roadmap of Appendix: The Appendix is organized as
follows. We present theoretical proof of the robustness of
distributional changes in Section A, the proof of conver-
gence in Section B. Additional experiment results are in
Section C.

A. Proof of Value Difference Upper Bound

A.1. Preliminary

Given two distributions Ds and Dt over Z , let ⇧st denote
the collection of joint distributions over Z ⇥ Z . In partic-
ular, for all ⇡ 2 ⇧st, if iid draw (s, t) ⇠ ⇡, then s ⇠ Ds

and t ⇠ Dt. Given a metric d over Z , the Wasserstein dis-
tance is defined as the infimum over all such ⇡ 2 ⇧st of the
expected distance between (s, t) ⇠ ⇡.

W1 (Ds,Dt) , inf
⇡2⇧st

E
(s,t)⇠⇡

[d(s, t)]. (7)

A.2. Assumptions and Proofs

First, we state the assumption of Lipschitz stable, which
is derived from a standard notation of deletion stability,
often studied in the context of generalization [61]. Fol-
lowing [43], we assume our potential function is B(k)-
Lipschitz stable.

Assumption A.1 Let (Z, d) be a metric space. For po-

tential function � and non-increasing B : N ! [0, 1], �
is B-Lipschitz stable with respect to d if for all k 2 N,

S 2 Z
k�1

, and all z, z0 2 Z ,

|�(S, {z})� � (S, {z0})|  B · d (z, z0) . (8)

For the convenience of notation, for any z 2 Z and
subset S ✓ Z , we denote �z�(S) = �(S\{z}, {z}).
Therefore, fixing z 2 Z , we can write b⌫(z;�,D, N) as
ES⇠DN [�z�(S)]. Let ⇡ 2 ⇧st be some coupling of Ds

and Dt, we reformulate this expectation as:

E
S⇠DN

s

[�z�(S)] = E
S⇥T⇠⇡N

[�z�(S)]

= E
S⇥T⇠⇡N

[�z�(S)��z�(T )]

+ E
S⇥T⇠⇡N

[�z�(T )]

= E
S⇥T⇠⇡N

[�z�(S)��z�(T )]

+ E
T⇠DN

t

[�z�(T )] ,

(9)

where the first and last equation follow our definition that
the marginals of ⇡ are Ds and Dt, and the second equation
follows by the linearity of expectation.

Then we bound the first term [�z�(S)��z�(T )]. By
expanding the difference between �z�(S) and �z�(T )
into a telescoping sum of N pairs of terms, we bound each

pair to depend on a single draw (si, ti) ⇠ ⇡. For S, T 2

Z
N , and i 2 {0, . . . , N}, denote Zi =

⇣SN
j=i+1 sj

⌘
[

⇣Si
j=1 tj

⌘
, such that Z0 = S and ZN = T . Then we can

expand the first term as:

�z�(S)��z�(T )=
NX

i=1

�z� (Zi�1)��z� (Zi) . (10)

Since we assume � is B-Lipschitz stable, we can derive the
following bound:

E
S⇥T⇠⇡N

[�z�(S)��z�(T )]

= E
S⇥T⇠⇡N

"
NX
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#

=
NX
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E
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=
NX
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E
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R2ZN�2

[�z� (R [ {si})��z� (R [ {ti})]

 2B ·

NX

i=1

E
(si,ti)⇠⇡

[d (si, ti)]

 2NB E
(s,t)⇠⇡

[d(s, t)],

(11)
where the last two inequality follow the B-Lipschitz as-
sumption and the fact that each draw from ⇡ is iid. Finally,
we re-write the differences in values in terms of the infimum
over ⇧st to complete the bound.

b⌫ (z;�,Ds, N)� b⌫ (z;�,Dt, N)

 inf
⇡2⇧st


E

S⇥T⇠⇡N
[�z�(S)��z�(T )]

�

 2NB inf
⇡2⇧st

E
(s,t)⇠⇡

[d(s, t)]

= 2NB ·W1 (Ds,Dt)

(12)

B. Proof of FedCE Convergence

B.1. Preliminary

We start by setting up the basic FL training and objective.
Then we give the proof of our theorem.

Let G(k,i) denotes the locally accumulated stochastic
gradients scaled with a factor �. For the local client gra-
dients and global model update, we have the following rule:
(

G(k,i) , 1
�(k,i)

P(k,i)�1
�=0 ��

(k,i)rFi

⇣
w�

(k,i)

⌘

wk+1 �wk = �⌘dk,
(13)



where dk , PN
i=1 piG(k,i), and (k,i) denotes the lo-

cal update iterations (steps) for the client i at the k-
th round. ��

(k,i) denotes an arbitrary scalar, where
�(k,i) = [�0

k,i, · · · , �
�
k,i], �(k,i) = k�(k,i)k, and we assume

PN
i=1

pi

�(k,i)
p
(k,i)

P(k,i)�1
�=0 ��

(k,i) = 1 to make sure the
summation of aggregation factors is 1 for each communi-
cation round. For the global direction, we denotes it as the
global gradient rkF (wk)k. In particular, the global gradi-
ent in FL is the weighted average of all training clients, i.e.,
rkF (wk)k ,PN

i=1 pirFi(wk), where rFi(wk) is local
gradient of wk calculated on all training data from client
i. In FL, the learning objective is to find an optimal global
model w⇤

K by minimizing F (w⇤
K), that is:

w⇤
K , argminF (wk) . (14)

In other words, the loss value of F (wk) should decrease as
training goes (k increases). For the k-th round, we have the
objective of:

w⇤
k+1 , argmin

�
F
�
w⇤

k+1

�
� F (wk)

 
. (15)

By comparing Eq.(13) and Eq.(15), we have kdkk 

krF (wk)k.

B.2. Assumptions

We first state the assumptions on local function smooth-
ness and bounded gradients, which are commonly adopted
in optimization literature [45–49].

Assumption B.1 Each local objective function is Lipschitz

smooth, that is, for k 2 [0,K � 1]:

krF (wk+1)�rF (wk)k  L kwk+1 �wkk

Assumption B.2 For any local gradient rFi(w�
(k,i)) and

� 2 [0, ⌧(k,i) � 1], there exists �(k,i) � 0, such that,

���rFi (wk)�rFi

⇣
w�

(k,i)

⌘���  �(k,i)

���wk �w�
(k,i)

���

Assumption B.3 For all local gradients, s 2 [0,�] and �2
[1,(k,i)�1], there exists constants �(k,i)�0, such that,

�����

��1X
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⇣
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⌘�����

2
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��1X

s=0

krF (wk)k
2

B.3. Proof of the convergence theorem

In this part, we show how to derive the convergence the-
orem. First, we start with the differences between wk+1 and
wk. Since the global gradient is Lipschitz smooth, we have:

F (wk+1)� F (wk)

rF (wk) (wk+1 �wk) +
L

2
kwk+1 �wkk

2

=� ⌘ hrF (wk) ,dki+
⌘2L

2
kdkk

2 .

(16)

The first inequality is from Lipschitz smooth assumption
and the second equation is by inserting Eq.(13). Then we
reformulate the inner product term into the following form:

hrF (wk) ,dki =
1

2
krF (wk)k

2 +
1

2
kdkk

2

�
1

2
krF (wk)� dkk

2.
(17)

By substituting Eq.(17) into Eq.(16), the inequation can be
formulated as:

F (wk+1)� F (wk)

�
1

2
⌘
⇣
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2
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⌘

2
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2,

(18)
when ⌘L � 1 � 0. The last inequality is because kdkk 

krF (wk)k. Next, we present how to bound the term
krF (wk)� dkk

2.
By the definition of dk, for i 2 [1, N ] and k 2 [0,K�1],

we have:
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(19)
where the first and second inequality uses Jensen’s Inequal-
ity and the last inequality follows our assumption B.2. For



training in FL, when local iteration � = 0, we have wk =
w�

(k,i), this induces kwk �w�
(k,i)k

2 = 0 in Eq.(19). So we
consider the differences when � � 1.

���wk �w�
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2
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(20)

The inequality here follow our assumption B.3. By inserting
this equation back to Eq.(19), we obtain:

krF (wk)� dkk
2


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2.

(21)
For the ease of notation, we define ⇢k,i =

k�(k,i)k1

k�(k,i)k
p
(k,i)

and A(k,i)=⌘
p
(k,i)((k,i)�1)�2

(k,i)�(k,i). Then we have:

krF (wk)� dkk
2


⌘

2

NX
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pi⇢(k,i)A(k,i)krF (wk)k
2

=
⌘

2
krF (wk)k

2
NX

i=1

pi⇢(k,i)A(k,i).

(22)

After obtaining the bound of the differences between server
and normalized gradient, we are now ready to derive the
final result. Substituting Eq.(22) into Eq.(18), we have:

F (wk+1)� F (wk)

(
⌘2L

2
� ⌘)krF (wk)k

2

+
⌘2

4
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2
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(2⌘L+

NX

i=1
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2.

(23)

B.4. Proof of the convergence corollary

Here we further analyze relations between convergence
and our reweighting factors to present the effects of our
methods. Recall that in Eq.(18), ⌘L > 1. We also assume

the summation of aggregation factors is 1. Therefore, we
can construct an inequation as below:

 
⌘

NX
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piA
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(k,i) + ⌘

NX

i=1

pi⇢(k,i)L

!
� 1, (24)

where ⌘
PN

i=1 piA
1/2
(k,i) is always positive.

Next, to ensure the model converge in Theorem 3.3,
we need
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Eq.(24), we have:
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(25)

To ensure this inequality always hold, we have:

2L⇢(k,i) + ⇢(k,i)A(k,i)  4(A1/2
(k,i) + ⇢(k,i)L)

⇢(k,i)(A(k,i) � 2L)  4A1/2
(k,i)

⇢(k,i) 
4A1/2

(k,i)

(A(k,i) � 2L)

(when A(k,i) � 2L > 0)

(26)

We consider the convergence case when A(k,i) is domi-
nant, then we have:

⇢(k,i) 
4A1/2

(k,i)

(A(k,i) � 2L)
= O(

1p
A(k,i)

). (27)

This indicates that the model converges when ⇢(k,i) sat-
isfy this condition. And we are able to minimize the upper
bound of ⇢(k,i) by increasing A(k,i).

Recall that A(k,i) = ⌘
p
(k,i)((k,i) � 1)�2

(k,i)�(k,i).
The items ⌘ and (k,i) are related with experimental set-
tings. It is easy to understand that, if the training data are
iid, increasing the learning rate ⌘ or performing more lo-
cal iterations (k,i) improves the convergence. For non-iid
data, the convergence is also affected by data distribution.
If we increase learning rate or local step, the model conver-
gence speed may be improved at an early stage. However, it
may let the model trap into a local optimum or suffer large
client drifts when data are heterogeneous [48].



Next we focus on terms of �2
(k,i) and �(k,i), which are

related to our assumptions on the local gradients and pa-
rameters. According to Eq.(20), we have:

�2
(k,i) �
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2
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⌘2�(k,i)� krF (wk)k
2 ,

(28)

which is also related to �(k,i). So we focus on discussing
the relations between �(k,i) and convergence. From the As-
sumption B.3, we have:

�(k,i) �

���
P��1

s=0 rFi

⇣
ws

(k,i)

⌘���
2

P��1
s=0 krF (wk)k

2
. (29)

This term quantifies the percentage of local gradients over
the global(aggregated) gradients. That is, to increase �(k,i),
we need to weigh more on local gradients from client i.
Since the client with boundary data or different distribu-
tion is under-represented during training, which harms the
overall convergence. We need to assign higher weights to
promote training on this kind of client, thus improving con-
vergence. This well matches our contribution estimation
method, i.e., allocating higher weight to clients presenting
different information in gradient space or suffering high er-
ror on local data when their gradient is excluded.

C. Additional Experimental Results

In this section, we present more results of our method,
including the free rider detection, discussion on client con-
tributions, and visual comparison of segmentation results.

Free rider detection. We first present more results for the
free rider detection using the prostate dataset. As discussed
in the experiment section, we have combined the local-
global gradients cosine similarity and local-global model er-
ror difference to detect the free rider client. Here we further
present the results by using calculating the cosine similar-
ity between local and global gradients, as shown in Fig. 7.
From the figure can be observed that the similarity between
local gradients from the free rider and global clients de-
creases lower with training goes on. The free rider client
can be distinguished within 50 rounds. Interestingly, we
observe that client 6 presents a high cosine similarity, ex-
cept itself is the free rider. This is because client 6 has more
samples than other clients, and the gradients dominate oth-
ers during the aggregation. Therefore, it is critical to com-
bine both gradients and performance, which well matches
our motivation for method design.

Free rider 1 Free rider 2

Free rider 3 Free rider 4

Free rider 5 Free rider 6

Figure 7. Free rider study by using cosine similarity between local
and global gradients. X-axis denotes the communication rounds
and y-axis denotes the similarity.

Client contribution quantification. We propose to quan-
tify the client contribution by using the leave-one-out exper-
iment, which is a popular and reliable way for data valua-
tion [38]. It assesses how much performance we will lose if
we remove a certain client. However, it would be too com-
putationally expensive to perform in practice. We hereby
calculate the leave-one-out results as a reference to quantify
client contribution in the context of performance. Specifi-
cally, we run six independent federated training by remov-
ing client i 2 {1, . . . , 6} to calculate the performance drop.
Then we obtain the performance contribution by calculating
the proportion of drop, i.e., a larger performance drop indi-
cates this client has a larger performance contribution. Fur-
thermore, in standard federated averaging algorithm [44],
the sample proportion is typically used to indicate the im-
portance (e.g., aggregation weight) of clients. So we calcu-
late the sample contribution based on training samples. The
results are shown in Table 4 and 5. From the two tables can
be observed that, because the medical data collected from
different sources are heterogeneous, the sample contribu-



Table 4. Client contribution quantification on the retinal fundus dataset by using performance drop with regard to leave-one-out experiments
and using training sample proportions.

Client 1 2 3 4 5 6 No

Metric Disc Cup Disc Cup Disc Cup Disc Cup Disc Cup Disc Cup Disc Cup
Dice 86.84 74.06 88.26 74.21 88.46 73.25 87.41 73.58 82.52 70.66 89.43 74.05 89.43 75.50

� Dice -2.59 -1.44 -1.17 -1.29 -0.97 -2.25 -2.02 -1.92 -6.91 -4.84 0.00 -1.45 -
Performance Contribution 15.00% 9.50% 12.00% 15.00% 44.00% 5.50% -

Training Samples 50 98 47 230 80 400 -
Sample Contribution 5.52% 10.83% 5.19% 25.41% 8.84% 44.20% -

Groundtruth FedAvg q-FedAvg FedCICFFL CGSV Ours (Multi.) Ours (Sum.)

Figure 8. Qualitative comparison on the results of optic disc/cup segmentation from retinal fundus images. Each row denotes a client.

tion does not strongly correlate with performance contribu-
tion, that is, more samples from one client may not improve
the overall global performance a lot. This may be because
some other clients with similar data distribution play a com-
plementary role. For example, client 6 in the retinal dataset
has over 40% sample contribution, but the performance con-
tribution is 5.5% by the leave-one-out results. Therefore,

solely considering the sample number is not enough if we
aim to have a global model robust to various data distribu-
tions. In our experiments, we have presented how to pro-
mote collaboration fairness by considering the client contri-
bution, which is reflected by client performance improve-
ments. For the final client reward or credit allocation, it is a
comprehensive procedure that needs to cover multiple dif-



Table 5. Client contribution quantification on the prostate dataset by using performance drop with regard to leave-one-out experiments and
using training sample proportions.

Client 1 2 3 4 5 6 No

Dice 84.90 87.95 87.91 87.97 76.67 87.53 88.32
� Dice -3.43 -0.37 -0.42 -0.36 -11.65 -0.80 -

Performance Contribution 20.13% 2.19% 1.74% 2.09% 68.47% 4.68% -

Training Samples 381 238 278 242 389 814 -
Sample Contribution 16.27% 10.16% 11.87% 10.33% 16.61% 34.76% -

Table 6. Performance comparison using Dice score on image segmentation datasets of retinal fundus images and prostate MRI.

Task Retinal Fundus Segmentation Prostate MRI Segmentation
Client 1 2 3 4 5 6 Avg. Std. 1 2 3 4 5 6 Avg. Std.

Standalone 86.69 85.51 86.21 89.91 79.77 90.98 86.51 3.95 91.23 84.59 87.57 87.37 86.70 89.25 87.79 2.26
±0.32 ±1.41 ±0.69 ±0.15 ±1.59 ±0.06 ±0.40 ±0.55 ±0.86 ±0.32 ±0.05 ±0.13

FedAvg 81.34 85.21 83.28 88.16 40.81 90.79 78.27 18.66 91.10 84.59 89.02 89.09 83.87 89.27 87.82 2.90
±3.08 ±0.15 ±1.60 ±0.45 ±6.57 ±0.46 ±0.10 ±0.44 ±0.37 ±0.75 ±0.42 ±0.10

q-FedAvg 86.24 86.97 87.37 89.13 44.68 90.72 80.85 17.80 90.94 85.60 89.28 89.18 84.27 88.67 87.99 2.52
±0.80 ±0.20 ±0.66 ±0.40 ±3.42 ±0.15 ±0.25 ±0.56 ±0.37 ±0.85 ±0.32 ±0.09

CFFL 85.72 86.29 86.96 88.62 41.12 90.16 79.81 19.02 91.01 85.49 89.24 88.98 82.11 88.17 87.50 3.20
±2.17 ±1.32 ±0.58 ±1.95 ±2.35 ±0.95 ±0.67 ±0.72 ±0.39 ±0.86 ±2.20 ±0.41

FedCI 87.02 86.93 87.35 88.53 40.99 90.22 80.17 19.24 91.21 85.40 89.49 88.37 83.96 88.49 87.82 2.68
±1.47 ±0.41 ±0.40 ±0.39 ±7.94 ±0.14 ±0.68 ±0.74 ±0.57 ±0.94 ±0.49 ±0.28

CGSV 83.46 85.57 85.47 88.48 33.79 91.01 77.96 21.80 91.15 84.90 89.27 88.09 83.47 89.16 87.67 2.91
±1.53 ±0.15 ±0.79 ±0.71 ±2.59 ±0.65 ±0.38 ±0.66 ±0.35 ±0.93 ±0.34 ±0.25

FedCE (Multi.) 86.73 87.45 87.51 89.26 57.30 90.25
83.08 12.70

91.43 85.79 89.21 89.13 85.68 88.62
88.31 2.22

±1.46 ±0.14 ±0.57 ±0.32 ±1.32 ±0.15 ±0.33 ±0.55 ±0.46 ±0.59 ±0.29 ±0.10

FedCE (Sum.) 87.22 87.36 87.93 89.66 54.42 90.92 82.92 14.03 91.18 85.54 89.59 89.22 84.99 88.79 88.22 2.43
±0.61 ±0.60 ±0.56 ±0.29 ±1.84 ±0.28 ±0.30 ±0.19 ±0.33 ±0.82 ±0.44 ±0.05

ferent aspects, including our studies performance, as well as
more factors like the computing cost, annotation cost, data
quality, etc. The study on final client rewards or monetary
allocation is still an open and important question that needs
to be further investigated.

Distribution shifts on two datasets In this work, we con-
sider two types of data heterogeneity sources to cover real
medical scenarios. First is feature space shift from dif-
ferent imaging devices/protocols and variations during the
imaging process, etc. In our scenario, prostate MRI data is
captured by different machines and imaging protocols, and
fundus image varies with different machines, illumination
conditions, field of views, etc. The retinal dataset is “less
homogeneous” than the prostate dataset because of more
variations in color space and field of view. Besides the fea-
ture shift, we also consider an additional special case shift,
reflected by the retinal data: one of the clients has a differ-
ent image setting (dual) from others (mono). This may not
apply to most medical applications, hence is a “less homo-
geneous” data than most modalities.

Complete results with three random seeds We present
the complete experiment results by reporting the mean and

standard deviation of three independent runs in Table. 6.
Notably, in the retinal fundus segmentation task, other com-
pared methods exhibit a large standard deviation for the spe-
cial client 5, while our method is more stable. Overall, our
method yields stable results, demonstrating its reliability.

Visualization of segmentation results. We further
present more qualitative segmentation results comparison
on both retinal fundus dataset and prostate MRI dataset,
as shown in Fig. 8 and Fig. 9. In two figures, each row
denotes one sample from a specific client, and each col-
umn denotes one method. We can see the samples visually
looks different, showing the data heterogeneity of medical
images collected from different hospitals/sources. Com-
pared with alternative methods, which may present a less
smooth boundary or cover more or less region, our methods
(i.e., the multiplication and summation versions defined in
Eq. 4.) present a more complete segmentation results with
more accurate boundary and segmented region.
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Figure 9. Qualitative comparison on the results of prostate segmentation. Each row denotes a client.


