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The document provides some supplementary materials
for our experiments. Specifically, in Sec. 1, we explore the
impact of different routing mechanisms and hyperparame-
ters on MixPHM performance. Sec. 2 presents some visual-
ization results of our method. Sec. 4 describes more imple-
mentation details. Sec. 3 provides additional results using
pretrained X-VLM on VQA v2.

1. Ablation Study and Parameter Analysis

In this section, using pretrained VL-T5 [2] as the under-
lying pretrained VLMs, we conduct additional ablation ex-
periments on routing mechanisms and hyperparameter anal-
ysis on VQA v2, GQA, and OK-VQA with ND = 64.
Impact of Different Routing Mechanisms. In MixPHM,
in addition to performance, routing mechanisms also affect
the training speed, i.e., T/Itr (s). To analyze the impact of
different routing strategies on performance and speed, we
first introduce two random routing methods, i.e., token-level
and sentence-level routing [3]. In addition, we develop a
simple representation-based rounding by averaging the out-
puts of all PHM-experts in each MixPHM. Table 1 shows
that random routing mechanism is the fastest and has the
best performance on both VQA v2 and OK-VQA.
Impact of Hyperparameters. To investigate the impact
of different hyperparameters on MixPHM, we conduct ex-
periments by varying Ne, dr, dk, and n. More specifically,
we consider the following settings: Ne ∈ {1, 2, 4, 8, 12},
dr ∈ {48, 64, 96, 192}, dk ∈ {1, 8, 16, 24}, and n ∈
{2, 4, 8, 16}. The results in Table 2 show that changing
these hyperparameters has only a slight impact on the per-
formance of MixPHM. In addition, the performance of Mix-
PHM with different hyperparameters always outperforms
full finetuning. This suggests that the performance improve-
ment brought by MixPHM does not significantly depend on
the hyperparameter selection.
Impact of α. When tuning pretrained VLMs with Mix-
PHM, α controls the trade-off between redundancy regu-
larization and generative modeling loss. To investigate the
impact of α on MixPHM, we perform experiments with dif-

Method T/Itr (s) VQA v2 GQA OK-VQA

MixPHM-Token 0.693 47.67 ±0.92 36.23 ±0.89 17.77 ±0.89

MixPHM-Sent 0.683 47.69 ±0.99 36.13 ±0.86 17.83 ±1.32

MixPHM-Rep 0.675 48.00 ±0.95 36.77 ±0.55 18.25 ±1.46

MixPHM 0.668 48.26 ±0.56 36.75 ±0.55 18.58 ±1.42

Table 1. Ablation on different routing mechanisms with ND =
64. T/Itr (s) is the average tuning time for each iteration.

HP #Param VQA v2 GQA OK-VQA

Finetuning 224.54 46.87 ±0.57 34.22 ±0.59 16.65 ±1.02

1 0.34 47.30 ±0.97 36.30 ±0.83 17.59 ±0.97

2 0.52 47.90 ±0.65 36.88 ±0.75 18.08 ±1.28

4 0.87 48.26 ±0.56 36.75 ±0.55 18.58 ±1.42

8 1.59 48.09 ±0.67 36.50 ±0.81 18.51 ±1.29

Ne

12 2.30 47.80 ±0.72 36.30 ±0.80 18.43 ±1.50

48 0.86 48.36 ±0.97 36.36 ±0.32 18.05 ±0.85

64 0.87 48.26 ±0.56 36.75 ±0.55 18.58 ±1.42

96 0.91 48.05 ±0.82 36.36 ±0.51 18.39 ±0.96
dr

192 1.00 47.97 ±1.17 36.37 ±0.82 18.26 ±1.20

1 0.18 47.87 ±0.73 35.74 ±0.70 17.04 ±0.81

8 0.87 48.26 ±0.56 36.75 ±0.55 18.58 ±1.70

16 1.67 48.35 ±1.14 36.62 ±0.35 18.22 ±1.36
dk

24 2.47 48.07 ±1.12 36.42 ±0.52 18.79 ±1.18

2 0.87 48.17 ±0.93 36.53 ±0.32 18.43 ±0.75

4 0.87 48.26 ±0.56 36.75 ±0.55 18.58 ±1.42

8 0.87 47.97 ±1.08 36.37 ±0.56 17.41 ±1.05
n

16 0.88 46.65 ±1.10 35.46 ±0.55 17.52 ±0.63

Table 2. Impact of hyperparameters (HP) on MixPHM. Ne:
the number of PHM-experts, dr: bottleneck dimension, dk: rank
dimension, n: the number of summations of Kronecker product.

ferent values of α, i.e., α ∈ {0.04, 0.06, 0.08, 0.1, 0.2, 0.4}.
Figure 1 illustrates the curve of VQA-Score as α increases.
We observe that varying α within a certain range [0.04, 0.4]
does not hinder the advantage of MixPHM over full finetun-
ing. In addition, according to the results on three datasets,
we empirically set α to 0.2.

2. Visualization Results

We visualize some examples of the proposed MixPHM.
As depicted in Figure 2, these answers are generated by the
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(c) OK-VQA

Figure 1. The average VQA-Score with standard deviation across five seeds as α varies.

Q: What is the person doing 

in the air?

GT: snowboarding (1.0), 

jumping (0.6)

A: snowboarding

Q: Of the words on the signs, 

which ones are official?

GT: both (0.3), left (0.3)

A: both

Q: Are those ducks in the 

water?

GT: no (1.0)

A: no

Q: Is the person surfing?

GT: yes (1.0), surfing (0.3)

A: yes

Q: How many people are in 

the picture?

GT: 2 (1.0)

A: 2

Q: Who wants to play?

GT dog (1.0)

A: dog

Q: What brand is that laptop?

GT: apple (1.0)

A: apple

Q: What color is the bear's 

coat?

GT: green (1.0), green and

white (0.9)

A: green

Q: How many baby teeth are 

visible?

GT: 4 (1.0), 3 (0.6)

A: 3

Q: What kind of material is 

this made of?

GT: wood (1.0)

A: wood

Q: What is the number on the 

player's back?

GT: 30 (1.0)

A: 30

Q: Who is in the photo?

GT: child (1.0), baby (0.9), 

kid (0.3), boy (0.3)

A: kid

Q: What are they getting 

ready to do?

GT: surf (1.0)

A: surf

Q: Is the man wearing a shirt?

GT: yes (1.0)

A: yes

Q: What is on top of the hot 

dog?

GT: relish (0.6), pickle (0.6), 

onion (0.3)

A: relish

Q: Will someone be injured?

GT: no (1.0), yes (0.6)

A: yes

Q: Which color are the 

bananas?

GT: yellow (1.0)

A: yellow

Q: Is this woman doing

something active?

GT: no (1.0)

A: no

Figure 2. Qualitative results on VQA v2 validation set. The answer (A) is generated by the VL-T5 tuned with the proposed MixPHM.
GT is the annotated answer and the corresponding score. We visualize the top-down attention [1] of images and mark the task-relevant
tokens of questions for the first and second highest attention scores.



Method
#Param #Sample

(M) (%) ND=16 ND=32 ND=64 ND=100 ND=500 ND=1,000

Finetuning 293.48 100% 26.63 ±0.98 29.33 ±1.68 30.45 ±1.80 31.48 ±1.57 38.96 ±1.56 43.92 ±1.22

BitFit [12] 0.29 0.13% 25.48 ±3.81 28.90 ±1.14 30.73 ±1.18 31.92 ±1.14 36.77 ±1.32 40.77 ±0.79

LoRA [5] 0.37 0.13% 25.31 ±1.50 26.91 ±3.09 30.52 ±1.67 31.97 ±1.11 36.13 ±1.12 40.49 ±0.87

Compacter [7] 0.25 0.09% 25.69 ±2.34 28.04 ±1.63 28.10 ±2.06 31.35 ±0.34 35.91 ±0.65 40.44 ±0.77

Houlsby [4] 3.57 1.20% 26.54 ±2.57 29.34 ±2.25 30.74 ±1.20 31.71 ±1.43 38.48 ±0.91 41.96 ±0.72

Pfeiffer [10] 1.78 0.60% 26.57 ±2.00 28.46 ±1.74 29.22 ±2.56 31.95 ±1.34 37.39 ±0.73 40.96 ±1.09

AdaMix [11] 4.44 1.49% 26.11 ±1.58 28.91 ±1.36 30.71 ±2.05 31.15 ±1.26 38.48 ±1.53 43.26 ±0.85

MixPHM 0.66 0.22% 27.54 ±1.52 30.65 ±1.09 31.80 ±1.61 32.58 ±1.09 41.05 ±1.22 48.06 ±0.64

Table 3. Experimental results with pretrained X-VLM. The average VQA-Score with standard deviation across 5 different seeds are
evaluated on VQA v2 validation set. The best and second best parameter-efficient tuning methods are highlighted. The number of tuned
parameters and the percentage of tuned parameters relative to X-VLM (i.e., 293.48M) are reported.

Method Learning rate Configuration

Finetuning 5× 10−5 —
BitFit 5× 10−5 —
LoRA 5× 10−5 r = 4
Compacter 5× 10−3 dr = 64, dk = 8, n = 4
Houlsby 5× 10−5 dr = 64
Pfeiffer 5× 10−5 dr = 64
AdaMix 5× 10−4 Ne = 4, dr = 64
MixPHM 5× 10−3 Ne = 4, dr = 64, dk = 8, n = 4

Table 4. Hyperparameter settings of all parameter-efficient
tuning methods. Ne: the number of experts, dr: bottleneck di-
mension, dk and r: rank dimension, n: the number of summations
of Kronecker product.

VL-T5 tuned via MixPHM on VQA v2 with ND = 64.
In addition, we visualize the top-down attention [1] of im-
ages and mark the top two task-relevant tokens of ques-
tions. Specifically, we follow a recent work [6] to compute
an attention score between task-relevant representations and
visual input features obtained using bottom-up Faster R-
CNN [1] and visualize the top-down attention for the first
and second highest scores. Analogously, we compute the
score between task-relevant representations and linguistic
embeddings of questions and mark the tokens for the first
and second highest scores. Figure 2 qualitatively shows
that our MixPHM can generate the consistent and question-
relevant visual and textual attention.

3. Results with Pretrained X-VLM
As a supplement to the results in Table 5 of the main pa-

per, we utilize pretrained X-VLM [13] as a representative
and compare our methods with state-of-the-art parameter-
efficient tuning methods on VQA v2 validation set. The
key hyperparameter settings for these parameter-efficient
methods are the same as those in Table 4. The conclu-
sions that we observe in Table 3 are consistent with Ta-
ble 5, i.e., our method consistently outperforms existing
parameter-efficient tuning methods when using other pre-
trained VLMs, which further demonstrates the generaliza-

tion capability of MixPHM.

4. Implementation Details
For parameter-efficient tuning methods, we search the

bottleneck dimension dr from {48, 64, 96, 192} for all
adapter-based methods (i.e., MixPHM, AdaMix, Pfeiffer,
Houlsby and Compacter), the number of experts Ne from
{1, 2, 4, 8, 12} for MixPHM and AdaMix, the rank dimen-
sion dr (for MixPHM and Compacter), r (for LoRA) from
{1, 8, 16, 24}, as well as the number of summations of Kro-
necker product n from {2, 4, 8, 16} for MixPHM and Com-
pacter. Table 4 presents the final configuration of the hyper-
parameters used in our experiments. For MixPHM, we set
the trade-off factor α to 0.2.

All methods are implemented using Pytorch [9] on an
NVIDIA GeForce RTX 3090Ti GPU. In addition, we also
perform a grid search to select the best learning rate from
{5× 10−5, 1× 10−4, 5× 10−4, 1× 10−3, 5× 10−3}. The
batch size and the number of epochs are set to 16 and 1000,
respectively. We utilize AdamW optimizer [8] and the early
stopping strategy with a patience of 200 non-increasing
epochs, where the stopping metric is the VQA-Score on the
development set Ddev of datasets.
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