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1. Implementation Details

Basis and Descriptor Setting For a fair comparison to
LIE [3], we set the dimension of the output basis of NIE
to be 20. Similarly, for the matching network, NIM, we
set the dimension of learned features (descriptors) to be 40.
Considering NIE as a key component, we conduct an ab-
lation study on the dimension of basis in Table 1. As dim
increases, OPT is improved while GeoError is worse, which
is probably due to over-fitting. Therefore setting it to be 20
is a good trade-off between the two metrics.

Down-sampling Scheme on the Modified DGCNN Re-
call that in Section 4 of the main submission, we propose
a modified version of DGCNN [4], which leverages point

Dimension 10 20 30
OPT 4.7 3.1 2.9
Geo. Err 7.1 9.5 11.3

Table 1. Ablation study of basis dimension on OPT (×100), rela-
tive geodesic error (x100).

cloud down-sampling for alleviating sampling density bias.
We denote by ns the size of the sub-sampled point obtained
from furthest point sampling. The empirical test validates
that ns = 3000 achieves a good balance between efficiency
and accuracy for all the datasets considered in our paper.
In Fig. 1, we provide the detailed network architecture and
parameters.

Figure 1. The top row depicts the network architecture of DGCNN [4]. In the bottom row, we specify our modification on top of the
EdgeConv blocks. Taking input dimension f = 3 as an example: Given a point cloud X , we subsample Xs by FPS sampling. Then we
conduct the nearest neighbor search of X on Xs and k-NN search(exclude itself) on Xs. After that, for a query point vq in X , we find its
nearest neighbor vp within Xs and assign the k-NN of vp within Xs to that of vq . Finally, we concatenate the k-NN of vp and vq as the
aggregation feature to the next procedure.
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Figure 2. Geodesic distances approximated by NIE on partial point clouds. In each input, we set the source point as the red dot on the left
hand, and visualize the geodesic distance from all the other points to it. The color ranges from blue (small distance) to red (large distance).

Additional details on experiments For the basis genera-
tor network, we train it with a batch size of 3 for 600 epochs.
We use a cosine annealing schedule with an Adam opti-
mizer in between a maximum learning rate of 0.002 and
a minimum learning rate of 0.0002. During training, we
randomly sample 4995 points from each shape. For the de-
scriptor generator network, we use a batch size of 4, again
with a cosine annealing schedule with an Adam optimizer
in between a maximum learning rate of 0.002, and a min-
imum learning rate of 0.001. We set λ1 = 1, λ2 = 1 and
λ3 = 0.5 in Eqn.7 for our experiments. We run a line search
of α in Eqn.11 on the small-scale dataset and fix it to be 30
for all experiments.

2. Geodesic Approximation for Partial Point
Clouds

Unlike the prior approaches on geodesic computation [1,
2] which rely on shape connectivity, our approach can
robustly approximate geodesic distances on disconnected
shapes (see, e.g., the hole and the cut in Fig. 2). Table 2
shows that NIE maintains a reasonable geodesic error when
partial point clouds (generated with FAUST r dataset) are
given. Fig. 2 shows the qualitative examples of geodesic
distance, where the source points are all set in the left hand.

Method full half hole cut
Ours 9.5 9.8 10. 13.0

Table 2. Relative geodesic errors (×100) for full and partial point
clouds.
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