Supplementary Material for “Robust Outlier Rejection for 3D Registration with Variational Bayes”

Haobo Jiang\(^1\), Zheng Dang\(^2\), Zhen Wei\(^2\), Jin Xie\(^{*1}\), Jian Yang\(^{*1}\), and Mathieu Salzmann\(^{*2}\)

\(^1\)PCA Lab, Nanjing University of Science and Technology, China
\(^2\)CVLab, EPFL, Switzerland

\{jiang.hao.bo, csjxie, csjyang\}@njust.edu.cn
\{zheng.dang, zhen.wei, mathieu.salzmann\}@epfl.ch

A. Proof of Variational Lower Bound

We propose two forms of variational lower bounds on our variational non-local network, including the point cloud-wise lower bound (§A.1) and the point-wise lower bound (§A.2). The former demonstrates the point-cloud distribution, while the latter shows a more detailed distribution for each point. For clarity, we apply the former in our paper.

\[p_{\theta}(b | C) = \ln \int_{z_L^{q,k,v}} p_{\theta}(b, z_L^{q,k,v} | C) \]

\[= \ln \int_{z_L^{q,k,v}} q_{\phi}(z_L^{q,k,v} | C, b) \frac{p_{\theta}(b, z_L^{q,k,v} | C)}{q_{\phi}(z_L^{q,k,v} | C, b)} = \ln \mathbb{E}_{q_{\phi}(z_L^{q,k,v} | C, b)} \left[\frac{p_{\theta}(b, z_L^{q,k,v} | C)}{q_{\phi}(z_L^{q,k,v} | C, b)} \right] \]

\[\geq \mathbb{E}_{q_{\phi}(z_L^{q,k,v} | C, b)} \left[\ln \frac{p_{\theta}(b, z_L^{q,k,v} | C)}{q_{\phi}(z_L^{q,k,v} | C, b)} \right] = \mathbb{E}_{q_{\phi}(z_L^{q,k,v} | C, b)} \ln \frac{p_{\theta}(b, z_L^{q,k,v} | C)}{q_{\phi}(z_L^{q,k,v} | C, b)} \]

where step (1) is based on the chain rule in probability theory. Next, based on the defined conditional dependencies of random variables in our probabilistic graphical model (Fig. 2), the chain rule is also used to factorize the posterior distribution.
\[q_\phi(z_{q,k,v}^{<L} \mid C, b) \] and the prior distribution \(p_\theta(z_{q,k,v}^{<L} \mid C) \) in Eq. 1:

\[
q_\phi(z_{q,k,v}^{<L} \mid C, b) = q_\phi(z_{q,k,v}^{<L-1} \mid z_{q,k,v}^{<L-1}, C, b) \cdot q_\phi(z_{q,k,v}^{<L-2} \mid z_{q,k,v}^{<L-2}, C, b) \cdot q_\phi(z_{q,k,v}^{<L-2} \mid C, b) \]

\[
\cdots
\]

\[
= \prod_{l=0}^{L-1} q_\phi(z_{q,k,v}^{<l} \mid z_{q,k,v}^{<l}, C, b)
\]

\[p_\theta(z_{q,k,v}^{<L} \mid C) = p_\theta(z_{q,k,v}^{<L-1} \mid z_{q,k,v}^{<L-1}, C) \cdot p_\theta(z_{q,k,v}^{<L-2} \mid z_{q,k,v}^{<L-2}, C) \cdot p_\theta(z_{q,k,v}^{<L-2} \mid C)
\]

\[
\cdots
\]

\[
= \prod_{l=1}^{L-1} p_\theta(z_{q,k,v}^{<l} \mid z_{q,k,v}^{<l}, C).
\]

By inserting the factorized posterior (Eq. 2) and prior (Eq. 3) distributions into Eq. 1, we can drive the detailed variational lower bound as below:

\[
\ln p_\theta(b \mid C) = \ln \int_{z_{q,k,v}^{<L}} p_\theta(b, z_{q,k,v}^{<L} \mid C)
\]

\[
\geq \mathbb{E}_{q_\phi(z_{q,k,v}^{<L} \mid C, b)} \left[\ln \frac{p_\theta(b \mid z_{q,k,v}^{<L}, C) \cdot p_\theta(z_{q,k,v}^{<L} \mid C)}{q_\phi(z_{q,k,v}^{<L} \mid C, b)} \right]
\]

\[
= \mathbb{E}_{n_{l=1}^{L-1} q_\phi(z_{q,k,v}^{<l} \mid z_{q,k,v}^{<l}, C, b)} \left[\ln \frac{p_\theta(b \mid z_{q,k,v}^{<L}, C) \cdot \prod_{l=0}^{L-1} p_\theta(z_{q,k,v}^{<l} \mid z_{q,k,v}^{<l}, C)}{\prod_{l=0}^{L-1} q_\phi(z_{q,k,v}^{<l} \mid z_{q,k,v}^{<l}, C, b)} \right]
\]

\[
= \mathbb{E}_{n_{l=1}^{L-1} q_\phi(z_{q,k,v}^{<l} \mid z_{q,k,v}^{<l}, C, b)} \left[\ln p_\theta(b \mid z_{q,k,v}^{<L}, C) - \ln \frac{\prod_{l=0}^{L-1} q_\phi(z_{q,k,v}^{<l} \mid z_{q,k,v}^{<l}, C, b)}{\prod_{l=0}^{L-1} p_\theta(z_{q,k,v}^{<l} \mid z_{q,k,v}^{<l}, C)} \right]
\]

\[
= \mathbb{E}_{n_{l=1}^{L-1} q_\phi(z_{q,k,v}^{<l} \mid z_{q,k,v}^{<l}, C, b)} \left[\ln p_\theta(b \mid z_{q,k,v}^{<L}, C) - \mathbb{E}_{n_{l=1}^{L-1} q_\phi(z_{q,k,v}^{<l} \mid z_{q,k,v}^{<l}, C, b)} \left[\sum_{l=0}^{L-1} \ln \frac{q_\phi(z_{q,k,v}^{<l} \mid z_{q,k,v}^{<l}, C, b)}{p_\theta(z_{q,k,v}^{<l} \mid z_{q,k,v}^{<l}, C)} \right] \right]
\]

\[
= \text{ELBO}(\theta, \phi)
\]

In our implementation, we use the deterministic hidden features \(\{h_{q,k,v}^{<l}\}_{l=1}^{L-1} \) to summarize the historical information in previous iterations (i.e., the condition parts of prior and posterior distributions) so that the lower bound can be rewritten as:

\[
\mathbb{E}_{n_{l=1}^{L-1} q_\phi(z_{q,k,v}^{<l} \mid z_{q,k,v}^{<l}, C, b)} \left[\ln p_\theta(b \mid z_{q,k,v}^{<L}, C) - \sum_{l=0}^{L-1} \mathbb{E}_{n_{l=1}^{L-1} q_\phi(z_{q,k,v}^{<l} \mid z_{q,k,v}^{<l}, C, b)} \left[\text{KL}(\phi(z_{q,k,v}^{<l} \mid z_{q,k,v}^{<l}, C, b) || p_\theta(z_{q,k,v}^{<l} \mid h_{q,k,v}^{<l})) \right] \right]
\]

\[
= \mathbb{E}_{n_{l=1}^{L-1} q_\phi(z_{q,k,v}^{<l} \mid h_{q,k,v}^{<l}, b)} \left[\ln p_\theta(b \mid \tilde{F}^L) - \sum_{l=0}^{L-1} \mathbb{E}_{n_{l=1}^{L-1} q_\phi(z_{q,k,v}^{<l} \mid h_{q,k,v}^{<l}, b)} \left[\text{KL}(\phi(z_{q,k,v}^{<l} \mid h_{q,k,v}^{<l}, b) || p_\theta(z_{q,k,v}^{<l} \mid h_{q,k,v}^{<l})) \right] \right]
\]

where we use the correspondence features \(\tilde{F}^L \) of the last non-local iteration to summarize the condition parts of \(p_\theta(z_{q,k,v}^{<l} \mid z_{q,k,v}^{<l}, C) \). Also, to avoid ambiguity, we denote the label prediction model \(p_\theta(b \mid \tilde{F}) \) as \(y_\theta(b \mid \tilde{F}) \).
A.2. Point-wise Variational Lower Bound

Furthermore, we extend Eq. 4 to a point-wise version. To this end, we rewrite the injected random variables \(z_{q,k,v}^{<L} \) as \(z_1^{<L} = \{ z_q^{<L}, z_{k,v}^{<L} \}^{10 < L \leq N} \) and we assume the points are independent. Thus, the prior and posterior distributions in Eq. 4 can be further divided as:

\[
p_\theta(z_{q,k,v}^{<L} | z_{q,k,v}^{<L}, C) = \prod_{i=1}^{N} p_\theta(z_{q,k,v}^{<L} | z_{q,k,v}^{<L}, C)
\]

\[
q_\phi(z_{q,k,v}^{<L} | z_{q,k,v}^{<L}, C, b) = \prod_{i=1}^{N} q_\phi(z_{q,k,v}^{<L} | z_{q,k,v}^{<L}, C, b_i)
\]

(6)

Also, the point-wise label prediction model can be written as:

\[
\ln p_\theta(b_i | z_{q,k,v}^{<L}, C) = \ln \prod_{i=1}^{N} p_\theta(b_i | z_{q,k,v}^{<L}, C) = \sum_{i=1}^{N} \ln p_\theta(b_i | z_{q,k,v}^{<L}, C)
\]

(7)

By inserting Eq. 6 and Eq. 7 into Eq. 4, we can achieve the following point-wise variational lower bound:

\[
\text{ELBO}(\theta, \phi) = \mathbb{E}_{p_\theta} \left[\ln p_\theta(b_i | z_{q,k,v}^{<L}, C) \right] - \sum_{i=0}^{N} \ln \prod_{i=1}^{N} q_\phi(z_{q,k,v}^{<L} | z_{q,k,v}^{<L}, C, b_i) \left[\prod_{i=1}^{N} p_\theta(z_{q,k,v}^{<L} | z_{q,k,v}^{<L}, C) \right]
\]

\[
- \left(\sum_{i=0}^{N} \ln \prod_{i=1}^{N} q_\phi(z_{q,k,v}^{<L} | z_{q,k,v}^{<L}, C, b_i) \right) \left[\prod_{i=1}^{N} p_\theta(z_{q,k,v}^{<L} | z_{q,k,v}^{<L}, C) \right]
\]

(8)

Similarly, we use the deterministic hidden feature \(h_{q,k,v}^{<L} \) to summarize the historical information in previous iterations:

\[
\text{ELBO}(\theta, \phi) = \mathbb{E}_{p_\theta} \left[\ln p_\theta(b_i | z_{q,k,v}^{<L}, C) \right] - \sum_{i=0}^{N} \ln \prod_{i=1}^{N} q_\phi(z_{q,k,v}^{<L} | z_{q,k,v}^{<L}, C, b_i) \left[\prod_{i=1}^{N} p_\theta(z_{q,k,v}^{<L} | z_{q,k,v}^{<L}, C) \right]
\]

\[
- \left(\sum_{i=0}^{N} \ln \prod_{i=1}^{N} q_\phi(z_{q,k,v}^{<L} | z_{q,k,v}^{<L}, C, b_i) \right) \left[\prod_{i=1}^{N} p_\theta(z_{q,k,v}^{<L} | z_{q,k,v}^{<L}, C) \right]
\]

(9)

B. Proof of Theorem 1

We let \(\{ k \} \mathcal{M}^{(ac)k}_{i=1} \) be the randomly sampled hypothetical inlier subset in RANSAC, and let \(C_{in}, C_{out} \) and \(p_{in} \) be the inlier subset, outlier subset and the inlier ratio, respectively, \(C = C_{in} \cup C_{out}, p_{in} = |C_{in}|/|C| \). We also denote the inliers in seed subset \(C_{seed} \) as \(C_{in} = C_{in} \cap C_{seed} \). Then, we can derive the following theorem:
Theorem 1. Assume the number of outliers in \((c) \tilde{M}_{c_i} \) (\(c_i \in \tilde{C}_{in} \)) follows a Poisson distribution \(\text{Pois}(\alpha \cdot m_{l}) \). Then, if \(\alpha < -\frac{1}{k} \cdot \log \left[1 - (1 - p_{in}^k)^{1/|\tilde{C}_{in}|} \right] \triangleq U \), the probability of our method achieving the inlier subset is greater than or equal to that of RANSAC.

\[
P\left(\max_{c_i \in \tilde{C}_{in}} |(c) \tilde{M}_{c_i} \cap C_{in}| = \kappa \right) \geq \nonumber \]

\[
P\left(\max_{1 \leq i \leq J} |(c) M_{i}^{sac} \cap C_{in}| = \kappa \right). \tag{10} \]

Proof. The probability that RANSAC can achieve the inlier subset can be calculated via:

\[
P\left(\max_{1 \leq i \leq J} |(c) M_{i}^{sac} \cap C_{in}| = \kappa \right) = 1 - P\left(\max_{1 \leq i \leq J} |(c) M_{i}^{sac} \cap C_{in}| < \kappa \right) \]

\[
= 1 - P\left(|(c) M_{1}^{sac} \cap C_{in}| < \kappa \right) \cdots P\left(|(c) M_{J}^{sac} \cap C_{in}| < \kappa \right) \nonumber \]

\[
\left(1\right) = 1 - P\left(|(c) M_{i}^{sac} \cap C_{in}| < \kappa \right)^{J} \nonumber \]

\[
= 1 - \left(1 - \left(1 - \frac{C_{in}}{C_l} \right) \right)^{J} \nonumber \]

\[
= 1 - \left(1 - \left(\frac{C_{in}}{C_l} \right)^{\kappa} \right)^{J} = 1 - \left(1 - p_{in}^{\kappa} \right)^{J}, \tag{11} \]

where step (1) is based on that random variables \(\{(c) M_{i}^{sac} \cap C_{in}| < \kappa \}_{1 \leq i \leq J} \) are i.i.d. Analogously, the probability of our method achieving the inlier subset can be calculated via:

\[
P\left(\max_{c_i \in \tilde{C}_{in}} |(c) \tilde{M}_{c_i} \cap C_{in}| = \kappa \right) \geq P\left(\max_{c_i \in \tilde{C}_{in}} |(c) \tilde{M}_{c_i} \cap C_{in}| = \kappa \right) \]

\[
= 1 - P\left(\max_{c_i \in \tilde{C}_{in}} |(c) \tilde{M}_{c_i} \cap C_{in}| < \kappa \right) \]

\[
= 1 - \Pi_{c_i \in \tilde{C}_{in}} P\left(|(c) \tilde{M}_{c_i} \cap C_{in}| < \kappa \right) \nonumber \]

\[
\left(1\right) = 1 - P\left(|(c) \tilde{M}_{c_i} \cap C_{in}| < \kappa \mid c_i \in \tilde{C}_{in} \right)^{|\tilde{C}_{in}|} \nonumber \]

\[
= 1 - \left(1 - P\left(|(c) \tilde{M}_{c_i} \cap C_{in}| = \kappa \mid c_i \in \tilde{C}_{in} \right) \right)^{|\tilde{C}_{in}|} \nonumber \]

\[
= 1 - \left(1 - \left(1 - e^{-\alpha \cdot m_{l}} \right) \right)^{|\tilde{C}_{in}|}, \tag{12} \]

where step (1) is based on that random variables \(\{|(c) \tilde{M}_{c_i} \cap C_{in}| < \kappa \}_{c_i \in \tilde{C}_{in}} \) are i.i.d; Step (2) is based on our assumption of Poisson distribution: \(P\left(|(c) \tilde{M}_{c_i} \cap C_{out}| = m \mid c_i \in \tilde{C}_{in} \right) = \frac{\left(\alpha \cdot m_{l}\right)^{m} e^{-\alpha \cdot m_{l}}}{m!} \). Finally, we let \(1 - (1 - e^{-\alpha \cdot m_{l}})^{|\tilde{C}_{in}|} \geq 1 - (1 - p_{in}^{k})^{J} \) and can get that if \(\alpha \leq -\frac{1}{k} \cdot \log \left[1 - (1 - p_{in}^{k})^{1/|\tilde{C}_{in}|} \right] \), the inequality 10 holds.

\[
\Box \]

C. Qualitative Evaluation

We first give some qualitative comparisons with PointDSC [1] (our baseline) on 3DLoMatch benchmark dataset in Fig. 2. As can be observed, in cases containing extremely low-overlapped regions (red box), our method can achieve more precise alignment. Those mainly benefit from our more discriminative correspondence embedding based on variational non-local network for more reliable inlier clustering. Also, we visualize the registration results on KITTI dataset in Fig. 3.
Figure 2. Qualitative comparison with PointDSC [1] (baseline) on 3DLoMatch benchmark [3].

Figure 3. Registration visualization on KITTI benchmark [2].
References

