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A. Video

Please check out the video for a demo.

B. Additional experiments

B.1. Perspective Fields on warped images

Table 1 shows the additional test results on warped im-

ages, extending Table 1 of the main paper. On warped im-

ages, which is another common operation of image post-

processing, our method continues to outperform other base-

lines and keeps the error on Up and Latitude low. Previous

methods which assume a global set of parameters poorly

describe the perspective of the image and have a large per-

formance drop.

B.2. Ablations: training on centered principal point
images.

Our method is trained on non-centered principal

points images. In Table 3, we re-train Ours without

RandomResizedCrop during data augmentation (Ours-

centered) so that all the methods are trained on centered

principal point images. We show results on the test set and

compare to Ours and the most competitive baseline Per-

cep. [4]. When tested on centered principal point images

(Perturb=None), Ours-centered is better than Ours in Ta-

ble 1. When tested on image crops (Perturb=Crop), Ours-

centered is slightly worse than Ours, but better than all other

baselines. We obtain similar results on the TartanAir [45]

dataset (not shown due to limited space). Even when trained

on centered principal points, the dense per-pixel nature of

the representation makes Ours-centered to be robust to im-

age crops.

In Table 2, distilling the Ours-centered version on crops

for COCO also improves over the baselines and is compa-

rable to Ours-distill, see Table 4. For example, when Per-

turb=crop, it has 3.93 vs 3.76 median error for Up and 6.66

vs 7.57 median error for Latitude; when Perturb=isolated,

it has 4.57 vs 4.12 median error for Up and 10.08 vs 9.56

median error for Latitude (Ours-centered-distill vs Ours-

distill).

B.3. Camera parameter estimation using optimiza­
tion

In Sec. 4.2 we have shown that camera parameters can

be accurately recovered from Perspective Fields using the

ParamNet. In this section, we will show that optimization

can also be used to recover camera parameters and, in some

cases, to improve upon predictions from ParamNet.

Setup. The optimization problem is five dimensional as

the five optimizable parameters are roll, pitch, relative fo-

cal length and the principal point (cx, cy). The relative fo-

cal length is defined as the focal length divided by image

height. Relative focal length is then converted to FoV for

evaluation. Adam was chosen as the optimizer with a learn-

ing rate of 10−4. The optimization runs for 1000 iterations

and stops if loss < 10−7 or if loss− previous loss < 10−9.

To perform the optimization, the Up-vector and Latitude

fields are generated from the optimizable camera parame-

ters. The loss is then calculated between these predicted

fields and the ground truth Up-vector and Latitude fields.

The objective function we minimize is the APFD metric

Loss = λarccos(u1 · u2) + (1− λ)||l1 − l2||1, (1)

where ui is the Up-vector and li is the Latitude value. The

weight λ = 0.5 is used in our experiments.

Parameter Initialization. We experiment with two differ-

ent methods of initializing the camera parameters for the op-

timization. Opt: Let ux be defined as the center of the Up-

vector field and lx be defined as the center of the Latitude

field. The camera roll is initialized to −arctan(ux0
/−ux1

).
The pitch is initialized to lx. Let l1 be the value of the Lat-

itude map at the top center of the image and l2 be the value

of the Latitude map at the bottom center of the image. The
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Table 1. Quantitative evaluation for scene-level Perspective Field prediction on warped images, extending Table 1. We re-implement

Percep. [4] using the same backbone and training data as ours. None of the methods have been trained on Stanford2D3D [2] or TartanAir [7].

Dataset Stanford2D3D [2] TartanAir [7]

Up (o) Latitude (o) Up (o) Latitude (o)

Method Perturb Mean ↓ Median ↓ % < 5o ↑ Mean ↓ Median ↓ % < 5o ↑ Mean ↓ Median ↓ % < 5o ↑ Mean ↓ Median ↓ % < 5o ↑

Upright [5] Warp 11.16 10.47 38.46 20.50 20.38 13.65 13.77 13.11 34.82 18.20 18.44 15.89

Percep. [4] Warp 10.01 9.25 34.29 14.23 13.77 20.93 9.55 8.76 33.84 9.85 9.59 27.14

CTRL-C [6] Warp 15.92 14.79 19.86 13.09 12.38 22.96 14.61 13.34 20.72 10.86 10.66 24.44

Ours Warp 3.39 2.72 66.82 5.95 5.48 46.79 4.11 3.45 61.08 5.47 5.12 48.62

Table 2. GSV uncentered principal-point optimization results. ParamNet is our method described in the main paper that regresses the

camera parameters from predicted Perspective Fields. We show that camera parameters can be further improved by using optimization to

adjust the predicted camera parameters to better match the Perspective Fields.

Method Roll (ç) ↓ Pitch (ç) ↓ FoV7 (ç) ↓ cx ↓ cy ↓ Up(ç) Latitude(ç)
Mean Med. Mean Med. Mean Med. Mean Med. Mean Med. Mean. ↓ % < 5o↑ Mean. ↓ % < 5o ↑

ParamNet 1.37 0.97 2.60 2.14 3.75 3.19 0.09 0.07 0.08 0.06 1.05 98.95 2.17 89.47
Opt 1.90 1.15 3.68 2.90 3.80 3.16 0.12 0.10 0.09 0.07 1.00 99.40 1.93 93.15
ParamNet + Opt 1.41 0.95 2.60 2.14 3.72 3.17 0.10 0.08 0.08 0.06 0.80 99.40 1.91 93.30

FoV is initialized to l1 − l2. The second method of initial-

izing the camera parameters (ParamNet + Opt) initializes

them to the output of ParamNet. The FoV is converted to

relative focal length for the optimization.

Results. Results for both of these initialization methods

on cropped images are shown in table 2. ParamNet is our

method described in the main paper that regresses the cam-

era parameters from predicted Perspective Fields. We show

that our camera parameters can be further improved by us-

ing optimization to adjust the predicted camera parameters

to minimize the APFD error with the predicted Perspective

Fields. The method that combines ParamNet and optimiza-

tion has 3.8% higher accuracy in the Latitude value.

C. Evaluation Details

C.1. Dataset

Scene level training set. Our training dataset contains 360ç

panoramas in equirectangular format which covers 180ç

vertically and 360ç horizontally. The dataset contains di-

verse scenes including 30,534 indoor, 51,157 natural and

110,879 street views. We sample crops from the panora-

mas with camera roll in [−45ç, 45ç], pitch in [−90ç, 90ç]
and FoV in [30ç, 120ç]. Our training and validation set

consist of 190830/1740 panorama images respectively. We

crop one perspective image per panorama and filter out ones

without too much context (if all pixels values are white or

black). Fig. 1 shows the camera parameter distribution of

our training dataset.

Object centric training set. We choose images from

COCO training set and inference our perspective field pre-

dictor to generate pseudo ground truth. We select categories

in “bicycle”, “book”, “bottle”, “chair”, “laptop” and large

objects whose area are greater than 962 = 9216 pixels. We

also disgard examples with low entropy value (< 3.5) from

our network classification results. As a result, we generate

a training set with 8192 images.

C.2. Training details

We use a transformer-based backbone from Seg-

Former [8] to extract features from the input RGB image.

Specifically, we use the Mix Transformer encoders (MiT-

B3) designed in SegFormer to extract hierarchical features.

It extracts course and fine features from the hierarchical

Transformer encoder using embedding dimensions of 64,

128, 320, 512. We find that the transformer based encoder

is effective for our task since it can enforce global consis-

tency in the perspective fields well.

The features are then fed into the All-MLP decoder in

SegFormer. The decoder produces a distribution over a set

of up directions or latitude values with the same resolution

as the input image. The up-vector head predicts kup = 72
classes representing evenly spaced unit vectors in 2D space.

The latitude head predicts klati = 180 classes representing

a discrete set of latitude value for each pixel evenly spaced

from −π/2 to π/2.

The input resolution is 320×320. We apply random flip-

ping, rotation, color jittering and blurring to the training

data. Since our perspective fields are translation invariant

and defined on images with different geometric operations

such as cropping, we also have random cropping and resiz-

ing on both the input image and ground truth perspective

fields as part of the data augmentation. We use the SGD

optimizer with momentum of 0.9. The learning rate is 0.01.

The batch size is 32.

C.3. Test set details

Stanford2d3d / TartanAir test set generation. Assuming



Table 3. We re-train Ours without RandomResizedCrop during data augmentation (Ours-centered) so that all the methods are trained

on centered principal point images, extending Table 1. We compare to Ours and the most competitive baseline Percep. [4].

Dataset Stanford2D3D [2] TartanAir [7]

Up (o) Latitude (o) Up (o) Latitude (o)

Method Perturb Mean ↓ Median ↓ % < 5o ↑ Mean ↓ Median ↓ % < 5o ↑ Mean ↓ Median ↓ % < 5o ↑ Mean ↓ Median ↓ % < 5o ↑

Percep. [4] None 3.58 3.32 64.19 6.27 6.07 42.36 7.30 6.86 47.04 11.35 11.22 27.69

Ours None 2.18 1.88 82.83 3.40 3.06 68.27 3.47 2.86 67.45 4.01 3.60 61.73

Ours-centered None 1.83 1.66 89.09 2.06 1.88 82.02 2.11 1.86 83.06 2.23 2.04 81.03

Percep. [4] Crop 5.78 5.55 45.52 9.76 9.65 29.13 5.54 5.18 51.72 9.22 8.66 30.10

Ours Crop 2.21 1.87 78.80 5.57 5.15 50.36 2.81 2.35 71.89 5.73 5.28 50.16

Ours-centered Crop 3.07 2.89 65.91 5.93 5.56 45.65 3.64 3.33 64.13 5.69 5.26 49.52
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Figure 1. Training set camera distribution.

Table 4. Ablation study for training on centered principal point

images only, extending Table 2.

Dataset Objectron [1]

Up (o) Latitude (o)

Method Perturb Mean ↓ Median ↓ % < 5o ↑ Mean ↓ Median ↓ % < 5o ↑

CTRL-C [6] crop 7.50 7.09 40.02 20.93 21.00 11.26

Ours-distill crop 4.19 3.76 57.71 7.71 7.57 33.54

Ours-distill-centered crop 4.19 3.93 57.31 7.02 6.66 36.76

CTRL-C [6] isolated 7.49 7.13 39.38 9.87 9.85 27.32

Ours-distill isolated 4.45 4.12 54.88 9.65 9.56 25.82

Ours-distill-centered isolated 4.85 4.57 52.21 10.39 10.08 27.24

perspective projection, we uniformly sample 2,415 views

from Stanford2D3D with camera roll in [−45ç, 45ç], pitch

in [−50ç, 50ç] and FoV in [30ç, 120ç]. For TartanAir, we

randomly sample 2,000 images from its test sequences with

roll ranging in [−20ç, 20ç], pitch in [−45ç, 30ç], and fixed

FoV (74ç). To test the robustness of methods, we add im-

age crop perturbation to the test image. We randomly crop a

quarter of the original image of aspect ratio 1, which is im-

plemented by RandomResizedCrop function from the Albu-

mentation [3] package. The ground truth Perspective Fields

can simply be cropped in the same way to match the RGB

image. For warp perturbation, we perform a random four

point perspective transform of the original image, the op-

eration is also implemented in Albumentation [3], with hy-

perparameters set as scale=(0.1, 0.2), fit output=False. The

ground truth Latitude map is warped the same way as the

RGB image. The corresponding Up-vectors are calculated

by the Homography.

GSV uncentered principal-point test set generation. We

randomly sample crops from the GSV views. Fig. 2 shows

the camera parameter distribution for the GSV uncentered

principal-point dataset.

C.4. Infer ground truth for in the wild images.

The qualitative examples in Figure 5 do not have a

ground truth since they are from the internet. To help infer

the ground truth, in Fig. 3 we show the location of the GT

horizon location. Assuming the laptop is placed on a hori-

zontal surface, we find the vanishing points of the two pairs

of parallel lines (cyan dashed lines) at the base. The hori-

zon line can be found by connecting the vanishing points

(orange dashed lines), which is outside of the image. Our

method has more accurate Latitude prediction compared to

other baselines as shown in Figure 5 of the paper.

C.5. User study for perspective matching metrics.

Fig. 4 shows the statistics of the correlation scores for

each metric. The box plot shows the minimum, maximum,

median, 1st quartile, 3rd quartile and outliers of each metric

following the standard box plot convention1. For the cam-

era parameter metrics, such as deviation in roll, pith, FoV

and the principal point (Prin. Point), the correlation score

distributions vary wildly. Among them, deviation in FoV

is a poor indication of human perception, which is consis-

tent with [4]. The change in pitch is a dominant factor in

1https://en.wikipedia.org/wiki/Box_plot
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Figure 2. Camera parameter distribution for GSV uncentered principal-point dataset.

GT Horizon line Ours

Figure 3. The GT horizon location (Orange dashed line) of the laptop example from the web image. Our method has more accurate Latitude

prediction compared to other baselines as shown in Figure 5 of the paper.

perspective mismatch in our setting. Summing the param-

eter difference (Camera All) does not improve correlation

scores, which shows the difficulty of using camera param-

eters to measure perceived perspective consistency. Fig. 5

shows the user rankings and APFD scores on different test

images.

D. Additional Qualitative Results

Additional Qualitative Results on Test Set. We show

qualitative results on Stanford2D3D and TartanAir test sets

in Fig. 6 and Fig. 7.

Additional Qualitative Results on Web Images. We show

additional qualitative results on web images in Fig. 8 and

Fig. 9.

Qualitative Results on Fisheye Images. We show qualita-

tive results of predicting Perspective Fields for fisheye im-

ages in Fig. 10. Sliding Win.: We take advantage of the lo-

cal representation and use a sliding window inference tech-

nique for images that are out of our training distribution. We

inference on small crops and aggregate the prediction for

each pixel from overlapping windows. The results in Fig. 10

use a window of size (0.5img height) × (0.5img width).
This window slides along a 12 × 18 grid uniformly on the

image and at each point predicts the Up-vectors and Lat-

itude Map within the window. The final output for these

values at each pixel is the mean of that pixels values in each

window that it was apart of. Fine-tune, we show results af-
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Figure 4. Pearson’s correlation for different metrics w.r.t. human

perception. Our APFD metric has the highest correlation with hu-

man perception.

ter fine-tuning the PerspectiveNet on distorted images.

Additional Qualitative Results on Google Street View In

Fig. 11 we show additional qualitative results from Perspec-

tiveNet as well as Persepctive Fields generated from the

ParamNet predictions on GSV uncentered principal-point

test set.

E. User Study Data Collection Interface

Fig. 12 shows the instruction users see and Fig. 13 is

the interface users use when collecting human perceptual

preferences.



Figure 5. User study examples and results. Given a background image and an object, we randomly generate 10 compositing results with

varied distortions. Pair-wise comparison is performed by a group of subjects. The white percentage number is the average winning rate

based on human votes (the higher the better), and the red number is the APFD metric computed based on the Perspective Fields of the

object and the background (the lower the better). There is a strong correlation between the perceptual quality and our metric.



Input Upright [5] Percep. [4] CTRL-C [6] Ours Ground Truth

Figure 6. Comparison between baselines on Stanford2D3D dataset. Each test scene has two rows: the first row is the original image with

a standard pin-hole camera perspective; the second row is a randomly cropped image. Up-vectors in the green vectors. Latitude colormap:

−π/2 π/2.



Input Upright [5] Percep. [4] CTRL-C [6] Ours Ground Truth

Figure 7. Comparison between baselines on TartanAir dataset. Each test scene has two rows: the first row is the original image with a

standard pin-hole camera perspective; the second row is a randomly cropped image. Up-vectors in the green vectors. Latitude colormap:

−π/2 π/2.



Input Upright [5] Percep. [4] CTRL-C [6] Ours

Figure 8. Additional qualitative results on web images, extending Fig. 5. Our approach produces better results compared to [5], [4],

and [6]. There is no ground truth available.



Input Upright [5] Percep. [4] CTRL-C [6] Ours-Distill

Figure 9. Additional qualitative results on web images, extending Fig. 5. Our approach produces better results compared to [5], [4],

and [6].



Input Sliding Win. Fine-tune Input Sliding Win. Fine-tune

Figure 10. Qualitative results on fisheye images from the wild using both the sliding window and fine-tune techniques. Up-vectors in the

green vectors. Latitude colormap: −π/2 π/2.



Input PerspectiveNet + ParamNet Ground Truth Input PerspectiveNet + ParamNet GroundTruth

Figure 11. Additional qualitative results of PerspectiveNet and ParamNet on GSV uncentered principal-point images. In the ParamNet

column, the ground truth principal point is indicated with a red dot and the predicted principle point is labeled with a green dot. Up-vectors

in the green vectors. Latitude colormap: −π/2 π/2.



You will see a pair of images below. Each of them has a virtual object inserted in the scene. The virtual object is 
supposed to have an upright pose relative to the scene, but we purposefully add varying levels of distortion to the 
object. We would like you to decide which inserted object is better aligned with the rest of the scene based on the 
level of the object being tilted or distorted. 

Below are some examples. 

[Right] The background camera is looking from bottom to up. The rocket in the left image is captured as if the camera 
is looking horizontally. The rocket in the right image is captured as if the camera is looking up. So the right image is 
better. 

 
 
[Left]  We don't care about whether the chair should be on the ground. But we do want the chair to be aligned with the 
background trees since trees are upright. 

 
 
[Right] Parallel lines should converge to one point. In this example, the side of the TV should be vertical in the world. 
The distortion of the left image does not match the background. The right image is more aligned. 

 

Figure 12. Instructions users see before creating annotation.



Figure 13. Example user study interface.
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