
A. More results of Fig. 2
In Fig. 3, we provide additional empirical results of

CIFAR-10 on ResNet-18, which show that our method can
effectively flatten the loss landscape and find flat minima.

B. Details of the experiments
B.1. Network Architecture

For all of our experiments in Sec. 5, we use 4 net-
work architectures as ResNet, WideResNet, VGG and Mo-
bileNetV2. We present the details in the following.

• ResNet/WideResNet: Architectures used are PreAct
ResNet. All convolutional layers (except downsam-
pling convolutional layers) have kernel size 3× 3 with
stride 1. Downsampling convolutions have stride 2.
All the ResNets have five stages (0-4) where each stage
has multiple residual/downsampling blocks. These
stages are followed by a max-pooling layer and a fi-
nal linear layer. We study the PreAct ResNet 18 and
WideResNet-34-10.

• VGG: Architecture consists of multiple convolutional
layers, followed by multiple fully connected layers and
a final classifier layer (with output dimension 10 or
100). We study the VGG networks with 16 layers.

• MobileNetV2: Architecture is built on an inverted
residual structure, with residual connections between
bottleneck layers. As a source of non-linearity,
the intermediate expansion layer filters features with
lightweight depthwise convolutions. As a whole, the
architecture of MobileNetV2 includes a fully convolu-
tional layer with three filters, followed by 19 residual
bottleneck layers.

B.2. Checkpoints

We set checkpoints for each epoch between 100 − 110
and 150 − 160, each 5 epoch between 110 − 150 and
160 − 200. All best performances are gotten from these
checkpoints.

C. An un-rigorous theoretical perspective
Please note that we provide a potential, interesting but

un-rigorous theoretical perspective in the following. This
section is not claimed as the contribution of this paper.

This section explores theoretical implication of the use of
randomized weights on robustness. Specifically, we provide
a shallow theoretical perspective which discusses how ran-
domized weights may affect the information-theoretic gen-
eralization bound of both clean and adversarial data.

Under the information-theoretic context, a learning algo-
rithm can be taken as a randomized mapping, where training

data set is input and hypothesis is output. With that, [75]
considered a generalization bound based on the informa-
tion contained in weights I(ΛW(S);w), where ΛW(S) :=(
L
(
fw(S),Y

))
w∈W is the collection of empirical losses in

hypotheses space W. Let P(L(fw1(S),Y),w2) = 0 where
w1 ̸= w2, we can use I(L(fw(S),Y);w) to approximate
I(ΛW(S);w) where w is the randomized weight distributed
in W, then get the following perspective.

Suppose L(fw(s), y) is σ∗-sub-Gaussian, D is the clean
data distribution and S is the training data set with m sam-
ples, then
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The above inequation provides the upper bound on
the expected generalization error of randomized weights.
Building upon the above bound, we consider generalization
errors of both clean and adversarial data based on discrete
distribution, then obtain the following proposition.

Proposition C.1 Let L(fw+u(s), y) and L(fw+u(s
′), y)

be σ∗-sub-Gaussian. We suppose the adversarial trained
model contains information of S ∨ S ′, where S ∨ S ′
is the joint set and the training samples are chosen at
random from S and S ′ with probabilities q and 1 − q,
i.e., L(fw+u(S ∨ S ′),Y) = qL(fw+u(S),Y) + (1 −
q)L(fw+u(S ′),Y). We let q ∈ (0, 0.5), since S ′ occupies a
large proportion in adversarial training, then
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We now make several observations about above inequa-
tion. First, it is obvious that more training data (larger m)
helps adversarial training to get a high-performance model.
Second, take into account both generalization errors of
clean and adversarial data with coefficient q, a lower mutual
information between

(
L
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)
,L
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))
and w + u is essential to get a better performance of ro-
bustness and clean accuracy.

The above mutual information is a statistic over high-
dimensional space, thus we are almost impossible to di-
rectly estimate and optimize it during training. Never-
theless, we can reduce it implicitly through the following
Lemma.
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Figure 3. Comparison of loss landscapes of TRADES trained model (the first row) and TRADES+1st+2nd (our method, the second row)
trained model. Loss plots in each column are generated from the same original image randomly chosen from the CIFAR-10 test dataset.
Following the settings in [20], the z axis represents the loss, the x and y axes represent the magnitude of the perturbation added in the
directions of sign∇sf(s) and Rademacher(0.5) respectively.
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Proof C.2 We suppose the adversarial trained model con-
tains information of S ∨ S ′, where S ∨ S ′ is the joint
set with L(fw+u(S ∨ S ′),Y) = qL(fw+u(S),Y) + (1 −
q)L(fw+u(S ′),Y). We let q ∈ (0, 0.5) because S ′ occu-
pies a large proportion in adversarial training. Random-
ized weight w is generated by normal training with data set
S and w+u is generated by adversarial training with joint
set S ∨ S ′, then
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Note that I
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holds, due to the data processing inequality
and S − S ∨ S ′ − w + u forms a Markov chain un-
der adversarial training where S ′ occupies a larger pro-
portion in S ∨ S ′. As I
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ily get Lem. C.2. □

Lem. C.2 gives us an upper bound and a lower bound.
The upper bound represents the worst case of adversarial
trained model where L
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and L
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)
are radically different (uncorrelated). To some extent,
it means the trained model is failed to extract common
features of clean data and adversarial data, thus needs
to use more parameters to recognize clean and adversar-
ial examples respectively. Lem. C.2 also charts a realiz-
able optimization direction for the model, the lower bound
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are completely correlated, that is, the optimal adversarial
trained model is successful at extracting common features
of clean data and adversarial data.



It is obvious that I
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dimensional space. Fortunately, Lem. C.2 allows us
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Lemma C.3 In this lemma, we consider the case of binary
response y ∈ {0, 1}, then the gap between L
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where we let ∝ represent positive correlation.

Proof C.3 Let fw+u(s)true be the normalized output of
fw+u(s) for true label and we consider the case of binary
response y ∈ {0, 1} in Lem. C.3. Then,
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where we let ∝ represent positive correlation. □

Lem. C.3 demonstrates |L(fw+u(s), y) − L(fw+u(s
′), y)|

is positive correlated with KL(fw+u(s)||fw+u(s
′)) in a bi-

nary case, this can also approximately hold in a multi-class
case. Thus, it allows us to optimize the mutual informa-
tion utilizing a simplified term of KL(fw+u(s)||fw+u(s

′)).
Although we are still difficult to directly deal with this KL
term during training, it can be decomposed by our method
in Sec. 4 with Taylor series.

D. Optimization
It is easy to see that minimizing Eu(L(g′s(w)Tu,

g′s′(w)Tu)), Eu(L(uT g′′s (w)u,uT g′′s′(w)u)) is equivalent
to reducing the distance between g′s(w) and g′s′(w), g′′s (w)
and g′′s′(w), respectively. Normally, the ℓ2 distance between
vectors g′s(w) and g′s′(w) can be defined as∣∣∣∣∣∣∂gs(w)
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We extend Eq. (15) by considering the sum of each row
vector of ∂(gs(w)−gs′ (w))

∂W and define the distance between
∂gs(w)
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We notice that, according to chain rule,[∑
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where W(j,k) is the element of j-th row, k-th column of
weight matrix W, N is the number of neurons (units) on
the layer.

Similarly, we define the distance between ∂2gs(w)
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Table 7. CIFAR-10, PreAct ResNet 18, under RayS hard label
attack (ℓ∞,%).

Method Clean Acc ADBD RayS Acc
TRADES 82.89 0.0412 56.06
TRADES+1st+2nd 84.13 0.0435 57.03

Table 8. CIFAR-10, ResNet 18, comparison of our method on AT
with GAT and HAT (ℓ∞,%).

Method Clean PGD-20 CW-20 AA
AT 82.41 52.77 50.43 47.1
AT+1st+2nd 83.56 54.23 52.19 48.7
GAT 80.49 53.13 - 47.3
TRADES+GAT 81.32 53.37 - 49.6
HAT 84.90 49.08 - -
HAT(DDPM) 86.86 57.09 - -
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E. More empirical results
More results of RayS hard-label attack [7], HAT [57],

GAT [66] methods are given in Tabs. 7 and 8.
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