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A. Overview
In this supplementary document, first, we demonstrate

training details when we incorporate ReDirTrans with

encoder-generator pair. Then we present some additional

quantitative results of ReDirTrans-GAN. Lastly, we intro-

duce the details when we implemented other state-of-the-art

baselines.

B. Implementation Details
We trained and evaluated ReDirTrans given two different

encoder-generator pairs: 1) the trainable encoder-decoder

pair from ST-ED [15]; 2) the pre-trained e4e [13] and Style-

GAN [7]. Thus we introduced implementation details in two

cases: 1) ReDirTrans and 2) ReDirTrans-GAN.

B.1. Datasets

GazeCapture [9] is the largest public gaze-related full-

face dataset including 1, 474 participants with over two mil-

lion frames taken under unconstrained scenarios. We utilize

its training subset to train the redirector and evaluate the

redirection precision with its test subset.

MPIIFaceGaze [14] is a widely used benchmark dataset

for the in-the-wild gaze estimation task. It includes 37, 667
full-face images captured from 15 participants with varied

head orientations, multiple gaze directions and different il-

luminations. We utilize this dataset to evaluate the cross-

dataset redirection performance.

CelebA-HQ [6] is a high-quality version of CelebA [10]

that consists of 30, 000 images at 1024×1024 resolution. We

utilize this dataset for evaluating the cross-dataset qualitative

redirection performance.

B.2. Preprocessing Steps

1) ReDirTrans: We preprocessed the image data to acquire

a 128× 128 restricted range of face images aligned with key

points of the nose and eyes, followed by [15].

2) ReDirTrans-GAN: We preprocessed the image data to

acquire 256× 256 full-face images aligned with key points

of the mouth and eyes. We utilized reflective padding to the

ReDirTrans Layers/Blocks

P

Pseudo

Label Branch

FC(3072, 96, w/bias), LeakyReLU()

FC(96, 4, w/bias), pi/2*Tanh()

Embedding

Branch

FC(3072, 3072, w/bias), LeakyReLU()

FC(3072, 96, w/bias)

DP FC(96, 1024, w/bias), LeakyReLU()

FC(1024, 3072, w/bias)

Table 1. The architecture of the projector and deprojector in

ReDirTrans. P denotes projector and DP denotes deprojector.

blank areas after alignment and then covered these areas

with Gaussian blur, followed by [6].

B.3. Projector-Deprojector

Since the inputs to the projector have already been the

decoded latent vectors from images, we utilized several fully

connected modules as the architectures of the projector-

deprojector. 1) ReDirTrans: Unlike ST-ED projecting the

input latent vector into nine attribute embeddings, our pro-

posed ReDirTrans only projected it into the aimed attribute

(gaze directions and head orientations) embeddings. The size

of the estimated label and embedding of one attribute are 2
and 3× 16, respectively. The details are illustrated in Table

1.

1) ReDirTrans-GAN: As for the ReDirTrans-GAN, the

main difference comes from the size of latent vectors in

latent space F . The details are shown in Table 2.

B.4. Encoder-Generator and Loss Functions

1) ReDirTrans: ST-ED proposed the architecture of

encoder-decoder pair given the DenseNet [4] architecture, for

128×128 output. As for the decoder, the convolutional layers

were replaced by the transposed convolutional layers and the

average-pooling layers. The detailed encoder-decoder struc-

ture is illustrated in [15]. To ensure the generation quality, we

utilized a PatchGAN [5] discriminator with corresponding

adversarial loss as proposed in ST-ED during the training.
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ReDirTrans-GAN Layers/Blocks

P

Pseudo

Label Branch

FC(512, 64, w/bias), LeakyReLU()

FC(64, 4, w/bias), pi/2*Tanh()

Embedding

Branch

FC(512, 128, w/bias), LeakyReLU()

FC(128, 96, w/bias)

DP FC(96, 256, w/bias), LeakyReLU()

FC(256, 512, w/bias)

Table 2. The architecture of the projector and deprojector in

ReDirTrans-GAN. P denotes projector and DP denotes depro-

jector.

2) ReDirTrans-GAN: Since both e4e and StyleGAN were

pretrained and fixed during the training, the image discrimi-

nator mentioned above was no longer used. Instead, to main-

tain the perceptual quality and editability of latent codes

after redirection as the original latent codes encoded by e4e,

we kept utilizing the e4e proposed delta-regularization loss

Ld−reg and the adversarial loss Ladv by a latent discrimina-

tor [11]. Noted that we applied these two loss functions to

the modified latent vectors after redirection to maintain the

editability of e4e encoded latent vectors.

B.5. Gaze and Head Pose Estimation Network

During training, we need a pretrained gaze and head pose

estimation network ξhg(·) as the estimator to supervise the

redirection process. During the evaluation, we require an-

other different external pretrained gaze and head pose es-

timation network ξ′hg(·), which is unseen during training,

to evaluate the consistency of the aimed attributes between

redirected and target samples. We followed the pipeline pro-

posed by ST-ED, which utilized a VGG-16-based ξhg(·) [12]

and a ResNet50-based ξ′hg(·) [3].

1) ReDirTrans: We retrained and employed the VGG-

16-based ξhg(·) and ResNet50-based ξ′hg(·) as the gaze and

head pose estimators, given the architectures and training

parameters illustrated in [15].

2) ReDirTrans-GAN: To fit the different sizes of input

(256× 256) and output images (1024× 1024) with the full

face range when training and evaluating ReDirTrans-GAN,

we downsampled the output images to 256× 256. The fully

connected modules after the convolutional part of ξhg(·) and

ξ′hg(·) were modified accordingly for different input sizes

compared with the ST-ED version. The detailed structures of

ξhg(·) and ξ′hg(·) are shown in Table 3 and Table 4, respec-

tively.

B.6. Training Hyperparameters

1) ReDirTrans: We trained ReDirTrans and the encoder-

decoder pair with the same hyperparameters as ST-ED [15]

by using over 1.4× 106 full-face images from GazeCapture

Nr. layers / blocks

0 VGG-16 Conv layers

1 AvgPool2d(size=4, stride=4)

2 FC(2048, 128, w/bias), LeakyReLU()

3 FC(128, 64, w/bias), LeakyReLU()

4 FC(64, 4, w/bias), 0.5π · tanh()

Table 3. The architecture of the VGG-16-based gaze direction and

head orientation estimation network, ξhg(·).

Nr. layers / blocks

0 ResNet-50 Conv layers, stride of MaxPool2d=1

1 FC(2048, 4, w/bias)

Table 4. The architecture of the ResNet50-based gaze direction and

head orientation estimation network, ξ′hg(·).

Training subset.

2) ReDirTrans-GAN: We randomly chose 10, 000 images

from the GazeCapture training subset to train ReDirTrans-

GAN since both the encoder and generator are fixed and

pretrained. The number of epochs is 2 with a batch size of 2.

The initial learning rate is 10−4 and is decayed by 0.8 every

3, 000 iterations. The optimizer is Adam [8] with the default

momentum value of β1 = 0.9, β2 = 0.999.

The loss weights are λr = 8, λL = 8, λID = 5,

λa = 1, λl = 5, λe = 2, λp = 10, λd−reg = 0.0002,

λadv = 2, where λd−reg and λadv are the weights of delta-

regularization loss Ld−reg and the adversarial loss Ladv,

respectively.

B.7. Redirection Step

We applied rotation matrices built by the pitch and yaw

to the estimated embeddings for redirection purposes.

⎡
⎣

cosφi 0 sinφi

0 1 0
−sinφi 0 cosφi

⎤
⎦·

⎡
⎣
1 0 0
0 cos θi − sin θi

0 sin θi cosθi

⎤
⎦ , i ∈ {1, 2}

(1)

where φ represents yaw and θ represents pitch, and index

i ∈ {1, 2} represents gaze directions and head orientations,

respectively.

C. Further Results
C.1. Gaze Correction

Table 5 and Table 6 present within- and cross-dataset eval-

uation performance for gaze correction tasks. e4e inversion

results can maintain gaze directions and head orientations

better in CelebA-HQ than GazeCapture since samples in

CelebA-HQ have much less varied gaze directions and head

orientations. However, after we included ReDirTrans in the



Gaze Redir ↓ Head Redir ↓ ID (It) ↓ ID (Ît) ↓
e4e 11.302 4.13 0.377 −

ReDirTrans-GAN 2.505 1.020 0.388 0.128

Table 5. Within-dataset gaze correction performance given the input latent vectors encoded by e4e in the GazeCapture test subset. As for the

ID similarity, we compared the redirected image with the real target image (It) and its inverted image (Ît).

Gaze Redir ↓ Head Redir ↓ ID (It) ↓ ID (Ît) ↓
e4e 4.448 2.586 0.286 −

ReDirTrans-GAN 3.157 2.257 0.314 0.099

Table 6. Corss-dataset gaze correction performance given the input latent vectors encoded by e4e in CelebA-HQ. As for the ID similarity, we

compared the redirected image with the real target image (It) and its inverted image (Ît).

Gaze Redir ↓ Head Redir ↓ ID (It) ↓ ID (Ît) ↓
ReDirTrans-GAN 2.648 1.863 0.212 0.130

Table 7. Within-dataset gaze and head redirection performance given the input latent vectors encoded by e4e in the GazeCapture test subset.

As for the ID similarity, we compared the redirected image with the real target image (It) and its inverted image (Ît).

inversion pipeline as ReDirTrans-GAN, we can successfully

maintain gaze directions and head orientations without af-

fecting identity information (ID), which was measured by a

pretrained ArcFace model [2]. Fig. 1 shows several exam-

ples.

C.2. Redirection Accuracy of ReDirTrans-GAN

Table 7 presents the redirection accuracy of ReDirTrans-

GAN in the GazeCapture test subset. We can observe that

ReDirTrans-GAN cannot achieve as accurate redirection

performance as ReDirTrans, which worked with the train-

able encoder-decoder pair. There exists a trade-off between

redirection accuracy and the following considerations:
• We utilized fixed encoder and generator parameters

during the redirector training to ensure no modification

to the predefined latent space;

• e4e encoded latent vectors in W+ have limitations to

understanding gaze in Section 4.7. e4e was trained with

the FFHQ dataset, which does not include samples with

as varied gaze directions and head orientations as the

samples in GazeCapture. Given some cases with large

gaze directions or head orientations, e4e cannot invert

them very well;

• We kept the redirected latent codes within the ‘high

editability space’ proposed by e4e to allow for

further editing with other face editing techniques, sac-

rificing some quality (redirection accuracy);

• Extended face covering ranges and down-sampling of

high-resolution generated images could cause the per-

formance drop.

• The deprojector learned that the redirected latent vec-

tors after addition and subtraction operations would

not deviate away from the original input latent vectors.

Thus ReDirTrans-GAN cannot redirect some extreme

cases as well as ReDirTrans did, especially for head

orientations.

• Predefined face alignments (four eyes corners and two

mouth corners) restricts both the encoder and genera-

tor’s ability for extreme head pose synthesis.

In summary, we made a deliberate choice to use a fixed

encoder-generator pair, preserve edited latent codes in W+,

and edit within the ‘high editability space’ to maintain com-

patibility with continuing facial attribute editing by other

methods. ReDirTrans-GAN provides a solution to edit at-

tributes in predefined feature spaces that have limited abil-

ities to depict those attributes. It also addresses the face

editing task of redirecting or correcting gaze from the latent

code perspective. Fig. 2 and Fig. 3 show redirected sam-

ples with modifying gaze directions and head orientations

separately.

C.3. Layer-wise Weights

Given the layer-wise representation of latent vectors in

W+ space, we proposed layer-wise weights loss to mea-

sure the contribution of each layer for the corresponding

attribute redirection. We compared the redirected samples

with and without considering the layer-wise weights loss,

shown in Fig. 4. We observed that gaze directions and head

orientations become entangled without this loss and the net-

work tends to learn a specific combination of gaze directions



Nr. layers / blocks

0 FC(4, 32, w/bias), LeakyReLU()

1 FC(32, 64, w/bias), LeakyReLU()

2 FC(64, 64, w/bias), LeakyReLU()

3 FC(64, 4, w/bias)

Table 8. Architecture of the scale transformation network. This

network transforms the pseudo labels into the scalars for the multi-

plication with the the global latent directions in F .

and head orientations. However, when we utilized this loss

with the estimated layer-wise weights to modify each layer’s

output residuals further. In that case, gaze directions and

head orientations can be disentangled and redirected inde-

pendently.

D. State-of-the-Art Baselines
D.1. ST-ED

We preprocessed the face images as shown in ST-ED

based on code repository 1. We trained and evaluated ST-ED

based on their published code repository 2.

D.2. VecGAN

VecGAN [1] was originally proposed to modify facial

attributes, such as gender, age, hair color, smiling and bangs.

We applied the VecGAN’s addition and subtraction opera-

tions in the latent space F to the ST-ED proposed encoder-

decoder pair. Instead of estimating embeddings from input

latent vectors, VecGAN only estimates the pseudo labels

of the aimed attributes. We utilized four orthogonal global

latent directions 1× 1344 for pitch and yaw control of the

gaze directions and head orientations separately. We can-

not directly apply the estimated labels to the global latent

directions in F by the multiplication operation due to the

scale problem. Thus we applied a shallow network for trans-

forming pseudo labels to scalars to fit for the global latent

directions. The network structure is shown in Table 8.

1https://github.com/swook/faze_preprocess
2https://github.com/zhengyuf/STED-gaze



Input e4e Inversion Redirection Input e4e Inversion Redirection

Figure 1. Gaze Correction Samples in CelebA-HQ. We set the same image as input and target to redirect the wrong gaze directions and head

orientations given e4e inversion results.
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Figure 2. Gaze Redirection Results. The head orientations are all set as (0◦, 0◦). ‘Pitch’ means that we only redirect the pitch component

of gaze directions and set yaw as 0◦. ‘Yaw’ means that we only redirect the yaw component of gaze directions and set pitch as 0◦. The

redirected angles are listed at the bottom of the figure.
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Figure 3. Head Redirection Results. The gaze directions are all set as (0◦, 0◦). ‘Pitch’ means that we only redirect the pitch component of

head orientations and set yaw as 0◦. ‘Yaw’ means that we only redirect the yaw component of head orientations and set pitch as 0◦. The

redirected angles are listed at the bottom of the figure.
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Figure 4. The comparison of redirected samples with or without using layer-wise weights loss in ReDirTrans-GAN. The gaze directions are

all set as (0◦, 0◦). We only redirect the head orientations given the provided pitch and yaw values below the figure. ‘W/-w’ denotes the

redirected samples with the layer-wise weights loss. ‘W/O-w’ denotes the redirected samples without the layer-wise weights loss.
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