TensoIR: Tensorial Inverse Rendering
Supplementary Material

A. Overview

In this supplementary material, we show more results of our method, including the detailed per-scene reconstruction results of the four synthetic scenes (Sec. B) and additional reconstruction results on four complex real scenes (Sec. C). We discuss the implementation details of our method and give an analysis of our design choices and the effects of different loss weights in Sec. D. Then, in Sec. E, we give more details about our setups on synthetic dataset generation and our multi-light capture, and provide an in-depth analysis of the multi-light results. Finally, we discuss the limitations of our methods in Sec. F.

B. Per-Scene Results on the Synthetic Dataset

In Tab. 1, we provide the results for individual synthetic scenes mentioned in Sec. 4 of the main paper. Our method outperforms both baselines in all four scenes. Figure 6 and Fig. 7 show our recovered normal, albedo, roughness, and relighting results from both our single- and multi-light-models on the four synthetic scenes.

C. Results on Real-World Captures

We capture 4 real objects (shown in Fig. 1) under natural illumination in the wild to evaluate our method on real data. When capturing, we fix the camera parameters (exposure time, ISO, etc) and (roughly) uniformly take photos around the object. We use commercial softwares (picwish and remove.bg) to remove the background in each photo and use COLMAP to estimate the camera poses. Figure 8 shows our reconstructed geometry, BRDF, and lighting on the real data. Note the quality of our reconstruction is affected by practical issues, such as the background removal quality, imperfect camera calibration, and non-static environment lighting (since there could be people passing by our in-the-wild setup). Nonetheless, our real-data results are still of very high quality. Please also see our video for more visual results.

D. Implementation Details

Representation details. As described in Sec. 3.2 in the main paper, we use a 3D density tensor G_σ and a 4D appearance tensor G_a in our TensoRF-based scene representation; both tensors are factorized as multiple tensor components with vector and matrix factors. As in TensoRF, our model generally works well for any spatial resolutions of the feature grids and any number of tensor components; in general, higher solutions and more components lead to better reconstruction quality. For most cases, we use a spatial resolution of 300^3; to achieve better details on scenes with complex thin structures (like Ficus), we use a resolution of 400^3. For all results, we use 48 tensor components (16 components per dimension) for the density tensor and 144 components (48 components per dimension) for the appearance tensor separately. For decoding the multiple appearance properties, we design our MLP decoder networks all as a small two-layer MLP with 128 channels in each hidden layer and ReLU activation. In addition, the Radiance Net receives the appearance feature and viewing direction as input, and the Normal Net and BRDF Net will receive intrinsic feature and 3D location as input. Frequency encoding is applied on both directions and locations.

For our multi-light representation (in Sec. 3.4 of the pa-
we upsample the vectors and matrices linearly rendering directly at the very beginning of the training process without generating the alphaMask, the training ray batch size can not be larger than 1024, otherwise, we would meet cuda-out-of-memory errors. And because we spend a few minutes generating a coarse alphaMask (which will be updated in the later training process), we can sample 4096 camera rays for each training batch. The number of points sampled per camera ray is determined by the grid resolution; a grid size of 3003 leads to about 1000 points per ray. When computing the visibility and indirect lighting, we sample 256 secondary rays starting from each surface point with 96 points per ray. Also, the visibility gradients and indirect lighting gradients are detached for GPU memory consideration. While our secondary ray sample is coarser than primary (camera) ray sampling, we find this is enough to achieve accurate shadowing and indirect lighting computation.

Loss details. Our model is reconstructed with a combination of multiple loss terms as introduced in Sec. 3.5 and Eqn. 13 in the paper. We now introduce the details of the BRDF smoothness term \(\ell_\beta \) and normal back-facing term \(\ell_d \) in Eqn. 13. In particular, we impose scale-invariant smoothness terms on our BRDF predictions (both roughness and albedo) to encourage their spatial coherence. For each sample point on the camera ray, we minimize the relative difference of its predicted material properties from those of the randomly-sampled neighboring points, defined as:

\[
\ell_\beta = \sum_{j, \mathbf{x}=r(t_j)} \| w_j \cdot (\beta_{\mathbf{x}} - \beta_{\mathbf{x}+\xi}) \|_2^2
\]

(1)
where \(\xi \) is a small random translation vector generated from a normal distribution with zero mean and 0.01 variance, and \(w_j \) is the volume rendering weights (as described in Eqn. 2 in the paper) to assign large weights for points around the object surface. This weight \(w_j \) has also been used for other loss terms (including the normal regularization term \(\ell_n \) in Eqn. 12). In addition, we also regularize the predicted normals by penalizing those that are near the surface and back-facing with the orientation loss introduced by Ref-NeRF:

\[
\ell_d = \sum_j w_j \max(0, n_j \cdot d)
\] (2)

We also have a TV loss shortly in the process of generating alphaMask to help eliminate some small floaters.

We set the radiance field rendering loss weight \(\alpha_{RF} \) to be 1.0, physically-based rendering loss weight \(\alpha_{PB} \) to be 0.2, and BRDF smoothness regulation loss weight to be 0.001. The \(\ell_1 \)-regularization on all tensor factors has the same loss weight as TensoRF.

The weight \(\alpha_n \) for normals difference loss \(\ell_n \) (the loss that constrains the difference between the predicted normals from Normal Net and the derived normals from the density field) is crucial for the final reconstruction quality. We find reasonable weights to lie in \([4 \times 10^{-4}, 6 \times 10^{-3}]\). Larger normals difference loss \(\alpha_n \) can help to prevent the Normal Net prediction from overfitting on input images but will at the same time damage the network’s ability to predict high-frequency details.

Effects of BRDF smoothness loss on lego’s reconstruction. We give more analysis and explanations about the artifacts of our albedo reconstruction result on lego scene, which has been discussed partly in the main paper. As shown by Fig. 5 of the main paper, NeRFactor’s albedo result on the lego scene looks closer to the ground truth than our results because it results looks smoother. In the main paper, we claim that this is because that NeRFactor uses a high-weight BRDF smoothness loss, which helps it achieve smooth albedo reconstruction but damages its reconstruction quality of other components. As shown in Fig. 3, when making the loss weight of our albedo smoothness loss become 20 times larger, our albedo result will be smoother and closer to the ground truth, but this will damage our normal reconstruction quality (but still better than the results of our baselines). Therefore, to have better geometry reconstruction results and to make the loss weight of BRDF smoothness loss fixed across different scenes, we do not use extra larger BRDF smoothness loss weight for lego in our experiments.

E. More Details and Analysis on Our Synthetic Dataset and Multi-Light Capture

More details about our synthetic dataset and multi-light settings. We perform experiments on four complex synthetic scenes, including three blender scenes (figus, lego, and hotdog) from the original NeRF and one (armadillo) from the Stanford 3D scanning repository. All data are re-rendered by multiple high-resolution (2048 \times 1024) environment maps to obtain their ground-truth images (800 \times 800).
Table 2. Quantitative comparisons of results on the synthetic dataset using single-light and multi-light input.

<table>
<thead>
<tr>
<th>Method</th>
<th>Normal MAE ↓</th>
<th>Albedo PSNR ↑</th>
<th>NVS PSNR ↑</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ours w/ single-light</td>
<td>4.100</td>
<td>35.258</td>
<td>34.395</td>
</tr>
<tr>
<td>Ours w/ rotated multi-light</td>
<td>3.602</td>
<td>29.672</td>
<td>34.395</td>
</tr>
<tr>
<td>Ours w/ general multi-light</td>
<td>3.551</td>
<td>29.326</td>
<td>34.395</td>
</tr>
<tr>
<td>Ours w/ limited general multi-light</td>
<td>3.670</td>
<td>29.320</td>
<td>34.100</td>
</tr>
</tbody>
</table>

In the main paper, we discussed our results on two types of multi-light data: **rotated multi-light data** and **general multi-light data**. **Rotated multi-light data** is rendered under a rotated multi-light setting, in which the images are rendered from the same 100 views as in the single-light setting, but each view has 3 images rendered by rotated environment maps. We rotate the same environment map along the azimuth for 0, 120, and 240 degrees, which can be done in practice by rotating the captured object (as done in Fig. 4). And with known rotation degrees, our method can optimize shared environmental lighting across the rotated multi-light data. **General multi-light data** is rendered under a general multi-light setting, in which we create three lighting conditions by rendering the objects with three unrelated environment maps, which will be optimized separately in the later training process.

Considering both multi-light settings above have more input training images than the single-light setting (the number of training views is the same, but multi-light settings above have more images per view), we introduce the third multi-light setting here which is called **limited general multi-light setting** to evaluate whether the improvements of reconstruction quality under multi-light setting are due to the extra number of input images. It uses the same kind of data as the general multi-light setting, but for each view we will only randomly select one image as training input from the 3 images under different lighting conditions, which guarantees that the number of training images in this setting is the same as the single-light setting. As shown in Tab. 2, while using the same number of images, such a setting still achieves better performance in BRDF estimation and geometry reconstruction than the single-light setting, which demonstrates the benefits of the multi-light input.

Analysis of results with multi-light captures. As shown in Tab. 1 (and also the main paper’s Tab. 1), our approach enables effective and efficient multi-light reconstruction, leading to better reconstruction accuracy. While the single-light novel view synthesis (physically-based rendering) results are slightly better than our multi-light results, this is simply because we evaluate novel view synthesis under the same single lighting, which the single-light model is specifically trained on (and easier to overfit). On the other hand, our multi-light model achieves better reconstruction and leads to much better rendering quality under novel lighting conditions (as shown by the relighting results). We also show visual comparisons between our single-light and multi-light results on both synthetic and real scenes in Fig. 2 and Fig. 4. Our multi-light reconstruction recovers more details in the normal maps and recovers better shading- and artifact-free albedo maps. We also achieve rotated multi-light capture for the real data by simply rotating the object three times. Our results in Fig. 4 show that even such simple multi-light acquisition can already lead to high-quality reconstruction in practice (better than the single-light results), demonstrating the effectiveness of our multi-light reconstruction model. We also find that multi-light settings can help to solve the color ambiguity between environmental lighting and object materials. As shown by Fig. 5, the color of reconstructed environment map is closer to the ground truth under multi-light settings.

F. Limitations

We evaluate our method on complex scenes from the original NeRF-Synthetic dataset to help understand the limitations of our method. In general, our approach has the following limitations: first, our physically-based rendering applies a surface-based rendering model, which means that we can not handle complex materials that can not be well modeled by this model, for example, translucent water that has strong reflection and refraction (see the red frame in Fig. 9) and transparent glass (see the green frame in Fig. 9). Second, we assume the materials of the objects to be dielectric (non-conducting) and therefore fix the F_0 in the fresnel term of our simplified Disney BRDF to be 0.04, which means in theory, we can not well model non-dielectric materials like metals. Replacing the pure physically-based BRDF with a learning-based neural BRDF that has learned data prior about materials from training data can help overcome this limitation. We leave it to be future works.
Figure 6. Our reconstructed normal, albedo, roughness and relighting results on hotdog and lego synthetic dataset. The G.T. roughness is marked as N/A, because the synthetic data is not rendered with the Disney BSDF model.
Figure 7. Our reconstructed normal, albedo, roughness and relighting results on ficus and armadillo synthetic datasets. The G.T. roughness is marked as N/A, because the synthetic data is not rendered with the Disney BSDF model.
Figure 8. Decomposed albedo, roughness, normal, and lighting with our method on four real objects.
Figure 9. Limitations of our method. We run our method on challenging scenes from the original NeRF-Synthetic dataset to help analyze the limitations of our method: the Ship scene and Drums scene contain complex materials such as translucent water and transparent glasses, which produce complex light transport effects that cannot be modeled by our existing surface-based rendering model. We also assume a fixed Fresnel term that is not suitable for modeling non-dielectric materials such as metals in the Drums scene. Therefore, our method produces renderings with artifacts and incorrect geometries in these regions.