
TensoIR: Tensorial Inverse Rendering
Supplementary Material

A. Overview

In this supplementary material, we show more results of
our method, including the detailed per-scene reconstruction
results of the four synthetic scenes (Sec. B) and additional
reconstruction results on four complex real scenes (Sec. C).
We discuss the implementation details of our method and
give an analysis of our design choices and the effects of
different loss weights in Sec. D. Then, in Sec. E, we
give more details about our setups on synthetic dataset
generation and our multi-light capture, and provide an in-
depth analysis of the multi-light results. Finally, we discuss
the limitations of our methods in Sec. F.

B. Per-Scene Results on the Synthetic Dataset

In Tab. 1, we provide the results for individual synthetic
scenes mentioned in Sec. 4 of the main paper. Our method
outperforms both baselines in all four scenes. Figure 6
and Fig. 7 show our recovered normal, albedo, roughness,
and relighting results from both our single- and multi-light-
models on the four synthetic scenes.

C. Results on Real-World Captures

We capture 4 real objects (shown in Fig. 1) under natural
illumination in the wild to evaluate our method on real data.
When capturing, we fix the camera parameters (exposure
time, ISO, etc) and (roughly) uniformly take photos around
the object. We use commercial softwares (picwish and
remove.bg) to remove the background in each photo and
use COLMAP to estimate the camera poses. Figure 8 shows
our reconstructed geometry, BRDF, and lighting on the real
data. Note the quality of our reconstruction is affected by
practical issues, such as the background removal quality,
imperfect camera calibration, and non-static environment
lighting (since there could be people passing by our in-the-
wild setup). Nonetheless, our real-data results are still of
very high quality. Please also see our video for more visual
results.

Figure 1. Four real objects we captured under natural lighting
conditions. Please see Fig. 8 for their reconstruction results.

D. Implementation Details

Representation details. As described in Sec. 3.2 in the
main paper, we use a 3D density tensor Gσ and a 4D
appearance tensor Ga in our TensoRF-based scene repre-
sentation; both tensors are factorized as multiple tensor
components with vector and matrix factors. As in TensoRF,
our model generally works well for any spatial resolutions
of the feature grids and any number of tensor components;
in general, higher solutions and more components lead
to better reconstruction quality. For most cases, we use
a spatial resolution of 3003; to achieve better details on
scenes with complex thin structures (like Ficus), we use
a resolution of 4003. For all results, we use 48 tensor
components (16 components per dimension) for the density
tensor and 144 components (48 components per dimen-
sion) for the appearance tensor separately. For decoding
the multiple appearance properties, we design our MLP
decoder networks all as a small two-layer MLP with 128
channels in each hidden layer and ReLU activation. In
addition, the Radiance Net receives the appearance feature
and viewing direction as input, and the Normal Net and
BRDF Net will receive intrinsic feature and 3D location as
input. Frequency encoding is applied on both directions and
locations.

For our multi-light representation (in Sec. 3.4 of the pa-

1



Scene Method Normal Albedo Novel View Synthesis Relighting
MAE ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

Lego

NeRFactor 9.767 25.444 0.937 0.112 26.076 0.881 0.151 23.246 0.865 0.156
InvRender 9.980 21.435 0.882 0.160 24.391 0.883 0.151 20.117 0.832 0.171

Ours (25 min) 7.780 26.000 0.910 0.138 32.180 0.952 0.061 27.430 0.935 0.094
Ours 5.980 25.240 0.900 0.145 34.700 0.968 0.037 28.581 0.944 0.081

Ours w/ three rotated lights 5.630 25.640 0.909 0.141 34.590 0.968 0.037 28.955 0.949 0.077
Ours w/ three general lights 5.370 25.560 0.905 0.146 34.350 0.967 0.038 29.008 0.947 0.078

Hotdog

NeRFactor 5.579 24.654 0.950 0.142 24.498 0.940 0.141 22.713 0.914 0.159
InvRender 3.708 27.028 0.950 0.094 31.832 0.952 0.089 27.630 0.928 0.089

Ours (25 min) 4.330 29.390 0.947 0.099 34.920 0.967 0.068 27.353 0.927 0.124
Ours 4.050 30.370 0.947 0.093 36.820 0.976 0.045 27.927 0.933 0.115

Ours w/ three rotated lights 3.240 30.180 0.959 0.079 35.310 0.972 0.051 28.459 0.939 0.110
Ours w/ three general lights 3.220 31.240 0.958 0.080 35.670 0.973 0.048 28.952 0.939 0.110

Armadillo

NeRFactor 3.467 28.001 0.946 0.096 26.479 0.947 0.095 26.887 0.944 0.102
InvRender 1.723 35.573 0.959 0.076 31.116 0.968 0.057 27.814 0.949 0.069

Ours (25 min) 2.360 31.860 0.983 0.068 35.160 0.978 0.053 32.358 0.968 0.056
Ours 1.950 34.360 0.989 0.059 39.050 0.986 0.039 34.504 0.975 0.045

Ours w/ three rotated lights 1.590 34.960 0.990 0.058 38.480 0.985 0.041 34.889 0.977 0.042
Ours w/ three general lights 1.550 34.270 0.989 0.057 38.230 0.984 0.043 34.941 0.977 0.043

Ficus

NeRFactor 6.442 22.402 0.928 0.085 21.664 0.919 0.095 20.684 0.907 0.107
InvRender 4.884 25.335 0.942 0.072 22.131 0.934 0.057 20.330 0.895 0.073

Ours (25 min) 5.040 25.590 0.948 0.059 27.140 0.958 0.062 23.076 0.935 0.083
Ours 4.420 27.130 0.964 0.044 29.780 0.973 0.041 24.296 0.947 0.068

Ours w/ three rotated lights 3.950 27.910 0.968 0.038 29.200 0.972 0.043 24.765 0.951 0.067
Ours w/ three general lights 4.060 26.220 0.952 0.054 28.640 0.967 0.050 24.622 0.949 0.068

Table 1. Per-scene results on the synthetic datasets.

per), we leverage the mean appearance feature āx (Eqn. 8)
for normal and reflectance decoding. In practice, this mean
is computed with the means of lighting vectors e, averaged
along the lighting dimension, without computing individual
ax,l for lower costs, leveraging the linearity of Eqn. 9).

Training and ray-marching details. We run our model
on a single RTX 2080 Ti GPU(11 GB memory) for all
our results. For fair comparisons, the baseline methods
(NeRFactor and InvRender) are also re-run with the same
GPU to test their run-time performance. We train our full
model using Adam optimizer; following TensoRF, we use
initial learning rates of 0.02 and 0.001 for tensor factors
and MLPs respectively. We also perform coarse-to-fine
reconstruction as done in TensoRF by linearly upsampling
our spatial tensor factors (started from N3

0 =1283 for all
cases) multiple times during reconstruction until achieving
the final spatial resolution (N3=3003 in most cases as
mentioned). We upsample the vectors and matrices linearly
and bilinearly at steps 10000, 20000, 30000, 40000 with the
numbers of voxels interpolated between N3

0 and N3 linearly
in logarithmic space.

The total training iteration is 80k and the average training
time is 5 hours. The first 10k will be used to generate
alphaMask, which is also used in the original TensoRF, to
help skip empty space, so it only has radiance field render-
ing to compute image loss and only costs about 5 minutes.
We do so because we find the alphaMask can greatly help
to reduce the GPU memory cost of physically-based render-
ing: We find that if we directly perform physically-based
rendering directly at the very beginning of the training

process without generating the alphaMask, the training ray
batch size can not be larger than 1024, otherwise, we would
meet cuda-out-of-memory errors. And because we spend
a few minutes generating a coarse alphaMask (which will
be updated in the later training process), we can sample
4096 camera rays for each training batch. The number
of points sampled per camera ray is determined by the
grid resolution; a grid size of 3003 leads to about 1000
points per ray. When computing the visibility and indirect
lighting, we sample 256 secondary rays starting from each
surface point with 96 points per ray. Also, the visibility
gradients and indirect lighting gradients are detached for
GPU memory consideration. While our secondary ray
sample is coarser than primary (camera) ray sampling,
we find this is enough to achieve accurate shadowing and
indirect lighting computation.

Loss details. Our model is reconstructed with a com-
bination of multiple loss terms as introduced in Sec. 3.5
and Eqn. 13 in the paper. We now introduce the details
of the BRDF smoothness term ℓβ and normal back-facing
term ℓd in Eqn. 13. In particular, we impose scale-
invariant smoothness terms on our BRDF predictions (both
roughness and albedo) to encourage their spatial coherence.
For each sample point on the camera ray, we minimize the
relative difference of its predicted material properties from
those of the randomly-sampled neighboring points, defined
as:

ℓβ =
∑

j, x=r(tj)

wj

∥∥∥∥ βx − βx+ξ

max(βx,βx+ξ)

∥∥∥∥2
2

(1)



G.T. Ours w/ single light Ours w/ general multi-light

Al
be

do
N

or
m

al

Ours w/ rotated multi-light

Figure 2. Comparison of single-light and multi-light results on
synthetic data.

where ξ is a small random translation vector generated from
a normal distribution with zero mean and 0.01 variance, and
wj is the volume rendering weights (as described in Eqn. 2
in the paper) to assign large weights for points around the
object surface. This weight wj has also been used for other
loss terms (including the normal regularization term ℓn in
Eqn. 12). In addition, we also regularize the predicted
normals by penalizing those that are near the surface and
back-facing with the orientation loss introduced by Ref-
NeRF:

ℓd =
∑
j

wj max(0,nj · d) (2)

We also have a TV loss shortly in the process of generating
alphaMask to help eliminate some small floaters.

We set the radiance field rendering loss weight αRF to
be 1.0, physically-based rendering loss weight αPB to be
0.2, and BRDF smoothness regulation loss weight to be
0.001. The ℓ1-regularization on all tensor factors has the
same loss weight as TensoRF. The weight αn for normals
difference loss ℓn (the loss that constrains the difference
between the predicted normals from Normal Net and the
derived normals from the density field) is crucial for the
final reconstruction quality. We find reasonable weights
to lie in

[
4× 10−4, 6× 10−3

]
. Larger normals difference

loss αn can help to prevent the Normal Net prediction from
overfitting on input images but will at the same time damage
the network’s ability to predict high-frequency details.

Effects of BRDF smoothness loss on lego’s reconstruc-
tion. We give more analysis and explanations about the
artifacts of our albedo reconstruction result on lego scene,
which has been discussed partly in the main paper. As
shown by Fig. 5 of the main paper, NeRFactor’s albedo
result on the lego scene looks closer to the ground truth
than our results because its result looks smoother. In the
main paper, we claim that this is because that NeRFactor
uses a high-weight BRDF smoothness loss, which helps
it achieve smooth albedo reconstruction but damages its
reconstruction quality of other components. As shown
in Fig. 3, when making the loss weight of our albedo
smoothness loss become 20 times larger, our albedo result
will be smoother and closer to the ground truth, but this will

Ours
Ours w/ 20× larger 
albedo smoothness weight NeRFactor G.T.

Al
be

do
N

or
m

al

Figure 3. Comparison of NeRFactor’s results, ours, and ours
with larger albedo smoothness weight. The above results show
that with larger BRDF smoothness loss weight on lego scene,
our method can get the similar smooth albedo recontruction
result as NeRactor’s result, but this will damage our geometry
reconstruction quality (although our geometry result under this
case is still better than NeRFactor).

Single Light Three Lights GT

Single Light Three Lights

Albedo

Normal

Albedo

Normal

Figure 4. Comparison of single-light and multi-light (three-light)
results on a real scene. The multi-light capture is achieved in a
practical way by simply rotating the object three times under the
same environment lighting.

damage our normal reconstruction quality (but still better
than the results of our baselines). Therefore, to have better
geometry reconstruction results and to make the loss weight
of BRDF smoothness loss fixed across different scenes, we
do not use extra larger BRDF smoothness loss weight for
lego in our experiments.

E. More Details and Analysis on Our Synthetic
Dataset and Multi-Light Capture

More details about our synthetic dataset and multi-
light settings. we perform experiments on four complex
synthetic scenes, including three blender scenes (ficus, lego,
and hotdog) from the original NeRF and one (armadillo)
from the Stanford 3D scanning repository. All data are re-
rendered by multiple high-resolution (2048 × 1024) envi-
ronment maps to obtain their ground-truth images (800 ×



Method Normal MAE ↓ Albedo PSNR ↑ NVS PSNR ↑
Ours w/ single-light 4.100 29.275 35.258

Ours w/ rotated multi-light 3.602 29.672 34.395
Ours w/ general multi-light 3.551 29.326 34.395

Ours w/ limited general multi-light 3.670 29.320 34.100

Table 2. Quantitative comparisons of results on the synthetic
dataset using single-light and multi-light input.

800 resolution) for training and testing, as well as BRDF
parameters and normal maps. We use the same camera
settings as NeRFactor, so we have 100 training views and
200 test views.

In the main paper, we discussed our results on two types
of multi-light data: rotated multi-light data and general
multi-light data. Rotated multi-light data is rendered
under a rotated multi-light setting, in which the images are
rendered from the same 100 views as in the single-light
setting, but each view has 3 images rendered by rotated
environment maps. we rotate the same environment map
along the azimuth for 0, 120, and 240 degrees, which
can be done in practice by rotating the captured object
(as done in Fig. 4). And with known rotation degrees,
our method can optimize shared environmental lighting
across the rotated multi-light data. General multi-light
data is rendered under a general multi-light setting, in
which we create three lighting conditions by rendering the
objects with three unrelated environment maps, which will
be optimized separately in the later training process.

Considering both multi-light settings above have more
input training images than the single-light setting (the num-
ber of training views is the same, but multi-light settings
above have more images per view), we introduce the third
the multi-light setting here which is called limited general
multi-light setting to evaluate whether the improvements
of reconstruction quality under multi-light setting are due
to the extra number of input images. It uses the same kind
of data as the general multi-light setting, but for each view
we will only randomly select one image as training input
from the 3 images under different lighting conditions, which
guarantees that the number of training images in this setting
is the same as the single-light setting. As shown in Tab. 2,
while using the same number of images, such a setting
still achieves better performance in BRDF estimation and
geometry reconstruction than the single-light setting, which
demonstrates the benefits of the multi-light input.

Analysis of results with multi-light captures. As shown
in Tab. 1 (and also the main paper’s Tab. 1), our approach
enables effective and efficient multi-light reconstruction,
leading to better reconstruction accuracy. While the single-
light novel view synthesis (physically-based rendering) re-
sults are slightly better than our multi-light results, this
is simply because we evaluate novel view synthesis under
the same single lighting, which the single-light model is
specifically trained on (and easier to overfit). On the other

Reconstructed Envir. Map
w/ single light

Reconstructed Envir. Map
w/ rotated multi-light

Reconstructed Envir. Map
w/ general multi-light

G.T.Result

G.T.Result

G.T.Result

G.T.Result

G.T.Result

Figure 5. Comparison of reconstructed environment maps under
single-light, rotated multi-light, and general multi-light settings.
Compared to single-light input, multi-light input enables more
accurate reconstructions of the lighting.

hand, our multi-light model achieves better reconstruction
and leads to much better rendering quality under novel
lighting conditions (as shown by the relighting results). We
also show visual comparisons between our single-light and
multi-light results on both synthetic and real scenes in Fig. 2
and Fig. 4. Our multi-light reconstruction recovers more
details in the normal maps and recovers better shading-
and artifact-free albedo maps. We also achieve rotated
multi-light capture for the real data by simply rotating the
object three times. Our results in Fig. 4 show that even
such simple multi-light acquisition can already lead to high-
quality reconstruction in practice (better than the single-
light results), demonstrating the effectiveness of our multi-
light reconstruction model. We also find that multi-light
settings can help to solve the color ambiguity between
environmental lighting and object materials. As shown by
Fig. 5, the color of reconstructed environment map is closer
to the ground truth under multi-light settings.

F. Limitations
We evaluate our method on complex scenes from the

original NeRF-Synthetic dataset to help understand the
limitations of our method. In general, our approach has the
following limitations: first, our physically-based rendering
applies a surface-based rendering model, which means that
we can not handle complex materials that can not be well
modeled by this model, for example, translucent water
that has strong reflection and refraction (see the red frame
in Fig. 9) and transparent glass (see the green frame in
Fig. 9). Second, we assume the materials of the objects
to be dielectric (non-conducting) and therefore fix the F0

in the fresnel term of our simplified Disney BRDF to
be 0.04, which means in theory, we can not well model
non-dielectric materials like metals. Replacing the pure
physically-based BRDF with a learning-based neural BRDF
that has learned data prior about materials from training data
can help overcome this limitation. We leave it to be future
works.



Normal Albedo Roughness Relighting 1 Relighting 2
Si

ng
le

 Li
gh

t
Ge

ne
ra

l 
M

ul
ti-

lig
ht

GT

N/A.

N/A.

Si
ng

le
 Li

gh
t

Ge
ne

ra
l 

M
ul

ti-
lig

ht
GT

Figure 6. Our reconstructed normal, albeo, roughness and relighting results on hotdog and lego synthetic dataset. The G.T. roughness is
marked as N/A, because the synthetic data is not rendered with the Disney BSDF model.



Normal Albedo Roughness Relighting 1 Relighting 2

N/A.

N/A.

Si
ng

le
 Li

gh
t

Ge
ne

ra
l 

M
ul

ti-
lig

ht
GT

Si
ng

le
 Li

gh
t

Ge
ne

ra
l 

M
ul

ti-
lig

ht
GT

Figure 7. Our reconstructed normal, albeo, roughness and relighting results on ficus and armadillo synthetic datasets. The G.T. roughness
is marked as N/A, because the synthetic data is not rendered with the Disney BSDF model.



Normal Albedo Roughness RenderingGT Env. Map

Figure 8. Decomposed albedo, roughness, normal, and lighting with our method on four real objects.



G.T. Normal

D
ru

m
s Reconstructed NormalReconstructed RoughnessReconstructed Albedo

Reconstructed Envir. Map Radiance Field Rendering Physically-based Rendering G.T image

G.T. Normal

Sh
ip Reconstructed NormalReconstructed RoughnessReconstructed Albedo

Reconstructed Envir. Map Radiance Field Rendering Physically-based Rendering G.T image

Figure 9. Limitations of our method. We run our method on challenging scenes from the original NeRF-Synthetic dataset to help analyze
the limitations of our method: the Ship scene and Drums scene contain complex materials such as translucent water and transparent glasses,
which produce complex light transport effects that cannot be modeled by our existing surface-based rendering model. We also assume a
fixed Fresnel term that is not suitable for modeling non-dielectric materials such as metals in the Drums scene. Therefore, our method
produces renderings with artifacts and incorrect geometries in these regions.


	. Overview
	. Per-Scene Results on the Synthetic Dataset
	. Results on Real-World Captures
	. Implementation Details
	. More Details and Analysis on Our Synthetic Dataset and Multi-Light Capture
	. Limitations

