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A. Datasets and Implementation Details

A.1. Datasets

MSRVTT. MSRVTT [23] contains 10K YouTube
videos, each with 20 text descriptions. We follow the training
protocol in [7, 12] and evaluate on text-to-video and video-
to-text search tasks on the 1K-A testing split with 1K video
or text candidates defined by [24].

ActivityNet Captions. ActivityNet Captions [9] con-
sists densely annotated temporal segments of 20K YouTube
videos. Following [7, 16, 21], we concatenate descriptions
of segments in a video to construct “video-paragraph” for
retrieval. We use the 10K training split to finetune the model
and report the performance on the 5K “val1” split.

DiDeMo. DiDeMo [1] contains 10K videos annotated
40K text descriptions. We concatenate descriptions of seg-
ments in a video to construct “video-paragraph” for retrieval.
We follow the training and evaluation protocol in [14].

MSRVTT-QA. MSRVTT-QA [22] is based on the
MSRVTT dataset and has 243K VideoQA pairs.

A.2. Implementation Details

For fair comparisons, we follow common practice [4, 14,
20] to extract the video representations of input videos and
the language representations of input texts. In detail, for
video representations, we first extract the frames from the
video clip as the input sequence of video. Then we use
ViT [5] to encode the frame sequence, by exploiting the
transformer [11, 19] architecture to model the interactions
between image patches. Followed by the CLIP [17], the
output from the [class] token is used as the frame embedding.
Finally, we obtain the video representation Vf = {vif}

Nv
i=1.

For text representation, we directly use the text encoder of
CLIP to acquire the text representation Tw = {tjw}

Nt
j=1.

The dimension of the feature is 512. The temporal trans-
former is composed of 4-layer blocks, each including 8 heads
and 512 hidden channels. The temporal position embedding
and parameters are initialized from the CLIP’s text encoder.
We use the Adam optimizer and set the temperature τ to
0.01. The initial learning rate is 1e-7 for text encoder and
video encoder and 1e-3 for other modules.

For text-video retrieval, we utilize the CLIP (ViT-
B/32) [17] as the pre-trained model. The frame length and
caption length are 12 and 24 for MSRVTT. The network is
optimized with the batch size of 128 in 5 epochs. We set the
caption length to 64 for ActivityNet Captions and DiDeMo.

For video question answering, we use the target vocab-
ulary and train a fully connected layer on top of the final
language features to classify the answer. The frame length
and question length are 12 and 32 for MSRVTT-QA. The
network is optimized with the batch size of 32 in 5 epochs.
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B. Proof of Theorem 1
We start by reviewing Banzhaf Values [3] and Banzhaf

Interaction [8] for a cooperative game.
The cooperative game theory consists of a set N =

{1, 2, ..., n} of players with a characteristic function ϕ :
2n → R. The characteristic function ϕ maps each team of
players to a real number. This number indicates the payoff
obtained by all players working together to complete the
task. The core of the cooperative game theory is calculating
how much gain is obtained and how to distribute the total
gain fairly [18].

Banzhaf Values. The Banzhaf value [3] is one of the
most important solution concepts in cooperative games. For-
mally, the Banzhaf value measures the average marginal
contribution of each player across all permutations of the
players. It is the unbiased estimation of the importance
or contribution of each player in a cooperative game [6],
and has thus found many applications from estimating fea-
ture importance to pruning neural networks. Given a set
N = {1, 2, ..., n} of players and a characteristic function
ϕ : 2n → R, the Banzhaf value B(i|N ) for player i is de-
fined as the average marginal contribution of player i to all
possible coalitions C ⊆ N that are formed without i:

B(i|N ) =
∑

C⊆N\{i}

p(C)(ϕ(C ∪ {i})− ϕ(C)), (A)

where p(C) = 1
2n−1 is the likelihood of C being sampled.

“N \ {i}” denotes removing {i} from N .
Banzhaf Interaction. In a cooperative game, some

players tend to form a coalition: it may happen that ϕ({i})
and ϕ({j}) are small and at the same time ϕ({i, j}) is large.
The Banzhaf Interaction [8] measures the additional benefits
brought by the coalition compared with the costs of the lost
interactions of these players with others. For a coalition
{i, j}, we consider [{i, j}] as a single hypothetical player,
which is the union of the players in {i, j}. Then, the reduced
game is formed by removing the individual players in {i, j}
from the game and adding [{i, j}] to the game.

Definition 1. Banzhaf Interaction [8]. Given a coalition
{i, j} ⊆ N , the Banzhaf Interaction I([{i, j}]) for the
player [{i, j}] is defined as:

I([{i, j}]) =
∑

C⊆N\{i,j}

p(C)[ϕ(C ∪ {[{i, j}]}) + ϕ(C)

−ϕ(C ∪ {i})− ϕ(C ∪ {j})],
(B)

where p(C) = 1
2n−2 is the likelihood of C being sampled.

“N \ {i, j}” denotes removing {i, j} from N .

Similar to Banzhaf value axioms [8], the following ax-
ioms convey intuitive properties that a cross-modal interac-
tion score should satisfy.

Axioms 1. Given a set N = {1, 2, ..., n} of players, a
characteristic function ϕ : 2n → R, and a coalition C =
{i, j} ⊆ N , following properties are met for the interaction
score I([C]). (a) Symmetry: If ∀S ⊆ N , ϕ(S ∪ {[C]}) =
ϕ(S∪{[C′

]}),
∑

i∈C ϕ(S∪{i}) =
∑

i′∈C′ ϕ(S∪{i′}), then
I([C]) = I([C′

]); (b) Dummy: If ∀S ⊆ N , ϕ(S∪{[C]}) =
ϕ(S),

∑
i∈C ϕ(S ∪ i) = 0, then I([C]) = 0; (c) Additiv-

ity: If ϕ(∗) and ϕ
′
(∗) have the interaction scores I([C])

and I ′
([C]) respectively, then the interaction score for the

game with value function ϕ(∗) + ϕ
′
(∗) is I([C]) + I ′

([C]);
(d) Recursivity: let B(∗) denote the Banzhaf value, then
B([C]|N \C∪{[C]}) = B(i|N \{j})+B(j|N \{i})+I([C]).
Theorem 1. The Banzhaf Interaction index satisfies Symme-
try, Dummy, Additivity and Recursivity axiom.

B.1. Symmetry Axiom

Symmetry states that if changing the value of two coali-
tions has the same effect on the output under all values of the
other variables, then both coalitions should have an identical
interaction score.

Proof. We consider C = {i, j}, C′
= {i′ , j′} fixed.

Let us choose T ⊆ N , and consider the unanimity game.
Clearly, ϕ(T ∪ {[{i, j}})−ϕ(T ∪ {[{i′ , j′}]}) = 0, ϕ(T ∪
i) − ϕ(T ∪ i

′
) = 0, ϕ(T ∪ j) − ϕ(T ∪ j

′
) = 0. That is,

for every T ⊆ N , C = {i, j} and C′
= {i′ , j′} produce the

same benefits. Thus, Banzhaf Interaction satisfies Symmetry
axiom, i.e., I([C]) = I([C′

]).

B.2. Dummy Axiom

Dummy states that if changing the value of a coalition [C]
has no effect on the output under all values of other variables,
then the interaction value of [C] should be zero.

Proof. We consider C = {i, j} fixed. Let us choose
T ⊆ N , and consider the unanimity game. Clearly, ϕ(S ∪
{[C]})− ϕ(S) = 0,

∑
i∈C ϕ(S ∪ i) = 0. For every T ⊆ N ,

C = {i, j} has no interaction with any player. Thus, Banzhaf
Interaction satisfies Dummy axiom, i.e., I([C]) = 0.

B.3. Additivity Axiom

Additivity states the sum of the interaction scores of the
two characteristic functions is equal to the interaction score
of the sum of these characteristic functions.

Proof. Let us choose T ⊆ N , and consider the
unanimity game. Clearly, for the characteristic function
Φ(∗) = ϕ(∗) + ϕ

′
(∗), Φ(T ) = ϕ(T ) + ϕ

′
(T ). That is,

for every T ⊆ N , the sum of the scores of the two charac-
teristic functions (ϕ(∗), ϕ′

(∗)) is equal to the score of the
sum of these characteristic functions Φ(∗). Thus, Banzhaf
Interaction satisfies Additivity axiom.

B.4. Recursivity Axiom

We hypothesize that the interaction score should depend
on the values of i when j is absent, and j when i is absent.
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Figure A. The structure of the prediction header. We choose four several popular structures, i.e., “MLP”, “CNN”, “MLP+SA” and
“CNN+SA”. V, T,D represent the number of visual tokens, the number of textual tokens, and the number of feature channels, respectively.

And somehow, their interaction should also be taken into
account. Specifically, Recursivity states that if the interaction
is positive, then the interaction score of [{i, j}] should be
greater than simply the sum of individual values. If the
interaction is negative, the interaction score of [{i, j}] should
be less than the sum.

Proof. We can rewrite Eq. B as I([C]) = B([C]|N \
C ∪ {[C]}) −

∑
i∈C B(i|N \ C ∪ {i}). Clearly, the above

formula is equivalent to Recursivity axiom. Thus, Banzhaf
Interaction satisfies Recursivity axiom.

C. Discussions
C.1. Banzhaf Interaction Estimator

Since the calculation of the exact Banzhaf Interaction
is an NP-hard problem [15], existing methods mainly use
sampling-based methods [2,10] to obtain unbiased estimates.
To speed up the computation of Banzhaf Interaction for many
data instances, we pre-train a tiny model to learn a mapping
from a set of input features to a result using MSE loss. The
tiny model consists of a convolutional layer for encoding
features, a self-attention module for capturing global interac-
tion, and a convolutional layer for decoding. The tiny model
has 64 hidden channels. The input is the similarity matrix of
video frames and text tokens, and the output is the estimation
of Banzhaf Interaction.

To explore the impact of the Banzhaf Interaction estima-
tor on our method, we compare the sampling-based method
and pre-trained tiny model estimator in Tab. A. Given the
costly training time, the ablation study is based on a subset
of MSRVTT dataset (3K videos, each with 20 text descrip-
tions). We find that the pre-trained tiny model maintains the
estimation accuracy while avoiding intensive computations.
The average training time is reduced from 19.79 seconds per

Method Text->Video Iteration
R@1↑ R@5↑ R@10↑ MnR↓ Time↓

Baseline 40.0 66.8 77.0 16.5 2.06 s

w/ Sampling-based method 41.5 68.6 78.9 15.1 19.79 s
w/ Tiny estimator 41.8 67.5 79.0 15.2 3.14 s

Table A. Effect of the Banzhaf Interaction Estimator. “↑” de-
notes that higher is better. “↓” denotes that lower is better.

iteration to 3.14 seconds per iteration.

C.2. The Structure of the Prediction Header

Due to the disparity in semantic similarity and interaction
index, we design a prediction header to predict the fine-
grained relationship Ri,j between the ith video frame and
the jth text word. To explore the impact of the structure
of the prediction header on our method, we compare four
popular structures, i.e., “MLP”, “CNN”, “MLP+SA” and
“CNN+SA”. Fig. A illustrates the structures.

“MLP” consists of a linear layer with a Relu activation
function for encoding features and a linear layer for decoding.
The dimension of the hidden channels is 64. “CNN” con-
sists of a convolutional layer with a Relu activation function
for encoding features and a convolutional layer for decoding.
The dimension of the hidden channels is 64. “MLP+SA”
consists of a linear layer with a Relu activation function
for encoding features, a self-attention module for captur-
ing global interaction, and a linear layer for decoding. The
dimension of the hidden channels is 64. “CNN+SA” con-
sists of a convolutional layer with a Relu activation function
for encoding features, a self-attention module for capturing
global interaction, and a convolutional layer for decoding.
The dimension of the hidden channels is 64.



Method Text->Video
R@1↑ R@5↑ R@10↑ MdR↓ MnR↓

MLP 47.2 73.7 83.5 2.0 12.3
CNN 47.3 73.5 83.7 2.0 12.2

MLP+SA 46.6 74.0 83.7 2.0 12.3
CNN+SA 48.6 74.6 83.4 2.0 12.0

Table B. Effect of the structure of the prediction header on
MSRVTT dataset. “SA” is the self-attention module. “↑” denotes
that higher is better. “↓” denotes that lower is better.

Method Text->Video
R@1↑ R@5↑ R@10↑ MdR↓ MnR↓

E->A 48.1 73.6 82.9 2.0 11.9
E->O 48.0 74.1 83.2 2.0 11.8
A->O 48.0 73.0 83.1 2.0 12.0
E->A + A->O 48.2 74.1 82.9 2.0 11.8
E->A + E->O 48.6 74.6 83.4 2.0 12.0

Table C. Ablation study about the self-distillation of our method
on MSRVTT dataset. E,A,O denote entity level, action level,
and event level, respectively. −> indicates the distillation direction.
For example, E −>A indicates the distillation from E to A. “↑”
denotes that higher is better. “↓” denotes that lower is better.

LI Banzhaf Deep LD Self Top1 Acc ↑ Top5 Acc ↑Interaction Supervision Distillation

45.2 73.1

! 45.8 73.7
! 46.0 74.0
! ! 46.0 74.1

! ! 46.1 74.2
! ! ! 46.2 74.2

Table D. Ablation study about the importance of each part on
MSRVTT-QA dataset. “↑” denotes that higher is better.

As shown in Tab. B, we find that the combination of CNN
and attention (“CNN+SA”) can capture both local and global
interaction, so it is beneficial for predicting the fine-grained
relationship between video and text. As a result, we adopt
“CNN+SA” to achieve the best performance.

C.3. Self-Distillation

Fig. B shows the performance of each semantic level.
We find that the entity level converges first in the training
process. This is because higher-level semantic features are
merged from lower-level semantic features. When lower-
level semantic features do not converge, it is difficult for
higher-level semantic features to learn semantic information.
Based on this observation, we propose using lower-level
semantic features to guide the learning of higher-level se-
mantic features. Thus, we distill the entity-level similarity
to the other two semantic levels.

To illustrate the impact of the self-distillation of our

Method Text->Video
R@1↑ R@5↑ R@10↑ MdR↓ MnR↓

Baseline 46.6 73.1 83.0 2.0 13.3

One level 47.5 73.7 83.0 2.0 12.0
Two levels 48.1 73.6 82.9 2.0 11.9
Three levels 48.6 74.6 83.4 2.0 12.0

Table E. Effect of the number of semantic levels (the number
of stacked token merge modules) on MSRVTT dataset. “↑”
denotes that higher is better. “↓” denotes that lower is better.
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Figure B. Performance at each semantic level of text-to-video
retrieval and video-to-text retrieval task.

method, we conduct ablation experiments on MSRVTT
dataset in Tab. C. As we can see, self-distillation improves
the generalization ability. Distilling from the entity level to
the other two semantic levels achieves the best results. As a
result, we distill the entity-level similarity to the other two
semantic levels as default in practice.

C.4. Ablation for Video-Question Answering Task

To illustrate the importance of each part of our method
for the video-question answering, we conduct ablation ex-
periments on MSRVTT-QA dataset in Tab. D. As we can
see, Banzhaf Interaction boosts the baseline with the im-
provement up to 0.6% at Top1 accuracy. Moreover, deep
supervision and self-distillation significantly improve the
generalization ability. Self-distillation provides limited im-
provement for video-question answering compared to text-
video retrieval. This is because reasoning relies primarily
on high-level semantic features. Therefore, it is difficult
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Figure C. Visualization of the text-to-video retrieval. Only the correct videos are highlighted in green.

Video:

Question：What is someone showing something in?

Our Answer：computer Ground truth：computer

Video:

Question：What is shown to help learn colors?

Our Answer：animation Ground truth：animation

Video:

Question：What is a man with a blue shirt and glasses doing?

Our Answer：talk Ground truth：talk

Figure D. Visualization of the video-question answering.

for low-level semantic features to guide high-level semantic
features. Our full model achieves the best performance and
outperforms the baseline by 1.0% at Top1 accuracy.

C.5. The Number of Semantic Levels

To efficiently generate coalitions among game players, we
cluster the original visual (textual) tokens and compute the

Banzhaf Interaction between the merged tokens. By stack-
ing token merge modules, we get cross-modal interaction
efficiently at different semantic levels.

To explore the impact of the number of semantic levels on
our method, we conduct ablation experiments on MSRVTT
dataset in Tab. E. We find that the performance of the model
increases with the number of semantic levels. These results
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Figure E. Visualization of the hierarchical interaction. Here, the degree of confidence from high to low is represented by red, orange,
green and blue lines, respectively. Entity-level interactions demonstrate the semantic correlation between frames and words. Action-level
interactions indicate the semantic correlation between clips and phrases. Event-level interactions show the semantic correlation between
segments and paragraphs.
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Figure F. Visualization of the hierarchical interaction. Here, the degree of confidence from high to low is represented by red, orange,
green and blue lines, respectively. Entity-level interactions demonstrate the semantic correlation between frames and words. Action-level
interactions indicate the semantic correlation between clips and phrases. Event-level interactions show the semantic correlation between
segments and paragraphs.
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Figure G. Visualization of the hierarchical interaction. Here, the degree of confidence from high to low is represented by red, orange,
green and blue lines, respectively. Entity-level interactions demonstrate the semantic correlation between frames and words. Action-level
interactions indicate the semantic correlation between clips and phrases. Event-level interactions show the semantic correlation between
segments and paragraphs.



indicate that stacking more token merge modules can provide
more coalitions, which enables the model to learn more
diverse semantic interaction information. We make a trade-
off between the number of semantic levels and computation
cost and set the number of semantic levels to 3 in practice.

C.6. Limitations of our Work

The cross-modal contrastive approach typically exploits
the coarse-grained labels of video-text pairs to learn a global
semantic interaction. To move a step further, we model
video-text as game players with multivariate cooperative
game theory to handle the uncertainty during fine-grained se-
mantic interaction with diverse granularity, flexible combina-
tion, and vague intensity. Therefore, our method inevitably
requires more training time costs. Although our method
takes less time than TS2-Net [13] during the inference stage
(see Tab. 5 in the main paper), more effort could be paid to
obtain an efficient structure in the future.

D. Visualizations
D.1. Text-to-Video Retrieval

We show two retrieval examples from the MSR-VTT
testing set for text-to-video retrieval in Fig. C. As shown in
Fig. C, our method successfully retrieves the ground-truth
video. These results demonstrate that our method can align
video and text effectively.

D.2. Video-Question Answering

We show the visualization of the video-question answer-
ing in Fig. D. As shown in Fig. D, our method succeeds in
getting the ground-truth answer. These results demonstrate
that our method can deal with cross-modal inference task
effectively.

D.3. Hierarchical Interaction

To better understand the proposed method, we show
the visualization of the hierarchical interaction in Fig. E,
Fig. F and Fig. G. This experiment shows that our Hier-
archical Banzhaf Interaction (HBI) can effectively handle
fine-grained semantic interaction with diverse granularity,
flexible combination, and vague intensity. More encourag-
ingly, the visualization illustrates that the proposed method
can be used as a tool for visualizing the cross-modal interac-
tion and help us understand the cross-modal model.
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