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Summary

>We provide in this document supporting materials that cannot fit into the manuscript due to the page limit, including more
details of the method pre-analysis, more implementation details of the proposed approaches, and various ablation studies for
the experiments in the main manuscript. In particular, we provide here additional results on the fourteen datasets in the
main manuscript.

> The organizations of this supplementary material are summarized as follows.
I Sec. 1: We begin in Sec. 1 by giving more details and explanations of Method Pre-analysis, corresponding to Sec. 3.3 of
the main manuscript.
I Sec. 2: Also, we give in Sec. 2 more descriptions of the various datasets used in the main manuscript and this supplement,
mentioned in Sec. 5.1 of the main manuscript.
I Secs. 3, 4, 5, 6, 7, and 8: Furthermore, in the following sections, we provide more implementation details, perform
extensive ablation studies including various network architectures and heterogeneous types of GNNs, and demonstrate more
visualization results to validate the effectiveness of the proposed series of complementary approaches for GARE.

Table of Contents
> The table of contents, as well as the lists of figures and tables in this supplementary material are provided below, for
the sake of easy reference.

Contents

1. More Details of Method Pre-analysis 3
1.1. Adversarial Reprogramming Attacks on Graph Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2. Aggregation Matters for Reusing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2. Dataset Statistics and Descriptions 4

3. Additional Results on Heterogeneous Node Property Prediction 5

4. Additional Results on Heterogeneous Graph Classification and Regression 7

5. Additional Results on Homogenous Node Property Prediction 8

6. Additional Results on Homogenous Graph Classification and Regression 8

7. Additional Results on 3D Object Recognition 9

8. Additional Results on Distributed Action Recognition 10

1



List of Figures

S1 Illustrations of adversarial reprogramming attacks on graph data, corresponding to Tab. 1 of the main paper. . 3
S2 Illustrations of sensor positions (image credited to [11]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
S3 Visualization results of the structures of the feature space, depicted as the distance between the red point and

the rest of the others. The visualized features are extracted from the intermediate layer of the models. . . . . 11

List of Tables

S1 Results of adversarial reprogramming attacks on graph data, where the adversary repurposes a node classifi-
cation model from the model provider to perform the adversary’s designated shape recognition task. . . . . . 3

S2 Detailed architectures used in Tab. S1 of this supplementary material. . . . . . . . . . . . . . . . . . . . . . 3
S3 Detailed architectures used in the section of “Rationale Behind MERE”, corresponding to Fig. 2 of the main

paper. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
S4 Vanilla GNN reusing results on the Cora-subset dataset with various aggregation behaviors. The detailed

network architecture for producing the results can be found in Tab. S3. . . . . . . . . . . . . . . . . . . . . . 4
S5 Summary of the fourteen datasets used in the main manuscript and supplementary material. Additional

dataset statistics for point cloud classification are shown in Tab. S6. . . . . . . . . . . . . . . . . . . . . . . 5
S6 Detailed dataset statistics of the ShapeNet part dataset [19] for the task of point cloud classification. . . . . . 5
S7 Detailed network architectures for producing the results in Tab. 2 of the main manuscript and also those in

Tabs. S8 and S9 of this supplementary material. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
S8 Ablation studies of using different pre-trained GNNs, corresponding to Tab. 2 in the main manuscript. Here,

we reuse a pre-trained node classification model on Cora to handle the tasks of Amazon Computers and
Amazon Computers with heterogeneous feature dimensions. . . . . . . . . . . . . . . . . . . . . . . . . 6

S9 Ablation studies of using a pre-trained computer-product category prediction model to tackle Amazon Computers

and Pubmed with various input dimensions, corresponding to Tab. 2 in the main manuscript. . . . . . . . . 6
S10 Network architectures for heterogeneous downstream graph classification and regression tasks, corresponding

to Tab. 4 in the main manuscript and also Tabs. S11 and S12 in this supplementary material. . . . . . . . . . 7
S11 Ablation studies of reusing various pre-trained GNNs, corresponding to Tab. 4 in the main paper. Here, we

pre-train a model on Amazon Computers and then reuse it to tackle the graph regression task of QM7b as
well as the graph classification task of PROTEINS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

S12 Ablation studies of reusing a pre-trained node classification model on Amazon Photo to handle the unseen
graph-level regression and classification tasks of QM7b and PROTEINS, corresponding to Tab. 4 in the main
paper. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

S13 Network architectures used in Tab. 5 of the main manuscript and Tab. S14 of this supplementary material. . . 8
S14 Ablation studies of reusing the pre-trained node classification models on ogbn-arxivwith various network

architectures elaborated in Tab. S13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
S15 Network architectures for producing the results in Tab. 6 of the main manuscript and also those in Tab. S16

in this supplementary material. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
S16 Ablation studies of reusing different pre-trained GNNs, corresponding to Tab. 6 in the main manuscript. Here,

the pre-trained model is designated for ogbg-molbbbp, whereas ogbg-molbace and ogbg-molesol
are considered as the two target downstream tasks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

S17 Detailed network architectures for the task of 3D object recognition on ModelNet40 and ShapeNet. . . . 9
S18 Detailed network architectures of reusing a GNN to handle the downstream distributed action recognition tasks. 10
S19 Ablation studies of model reusing with heterogeneous-type GNNs on the task of distributed human action

recognition, such as the GCN and GAT mechanisms, corresponding to Tab. 8 of the main manuscript. . . . . 10



1. More Details of Method Pre-analysis
We provide in this section more details and discussions on the method pre-analysis section in Sect. 3.3.1 and Sect. 3.3.2 of

the main manuscript, including the validation of adversarial reprogramming attacks on graph data, and the rationale of using
task-adaptive aggregators in model reusing.

1.1. Adversarial Reprogramming Attacks on Graph Data

In this section, we further explain and validate Remark. 1 in the main paper, which indicates the existence of adversarial
reprogramming attacks on topological graphs:

Remark 1 (Adversarial Reprogramming Attacks on Graph Data). Graph neural networks are susceptible to adversarial
reprogramming attacks, where an adversarial perturbation on graph data can readily repurpose a graph neural network to
perform a task chosen by the adversary, without notifying the model provider.

To further illustrate Remark. 1, we demonstrate in Fig. S1 an example adversarial reprogramming attack with graph data
as inputs, where an attack redirects a machine-learning paper classification model to handle the intended topological shape
recognition task, without informing the model provider, corresponding to the example in Tab. 1 of the main manuscript.
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Figure S1. Illustrations of adversarial reprogramming attacks on graph data, corresponding to Tab. 1 of the main paper.

Here, in Tab. S1, we show the results of the example attack in Fig. S1 with detailed explanations in the captions. Specif-
ically, to obtain the pre-trained node property prediction model in Tab. S1, we use the Cora dataset [8] in training, with the
detailed architectures provided in Tab. S2. For the attacker’s designated task of topological shape recognition, we instead use
a generated MiniGC-Dataset provided in the deep graph library [14]. The method of generating adversarial examples
here is the node-level perturbation mentioned in [9], where we specifically add the generated adversarial perturbations to the
raw node features.

Table S1. Results of adversarial reprogramming attacks on graph data, where the adversary repurposes a node classification
model from the model provider to perform the adversary’s designated shape recognition task.

Designated Tasks Before Attack After Attack Re-train from Scratch
Node Property Prediction (Model Provider) Acc: 87.69% - Acc: 87.69%
Shape Recognition (Adversarial Attacker) - Acc: 80.00% Acc: 87.00%

From Tab. S1, it is noticeable that the original model provided by the model provider is easily repurposed to tackle the
unseen graph-level task of shape recognition, whereas the original model function is to handle a node-level classification
task. The results on shape recognition are also promising, with an accuracy of 80%, which is on par with that of re-training
from scratch shown in the last column of Tab. S1. We also perform the experiment of directly feeding the raw data of shape
recognition, without adding adversarial perturbation, to the pre-trained model. Expectedly, the accuracy of such a vanilla
manner is only 0.16%, which demonstrates the effectiveness of the adversarial perturbations.

Table S2. Detailed architectures used in Tab. S1 of this supplementary material.

Architecture Layers Attention Heads Input Hidden Output
Pre-trained Model {Cora} 2 {8, 1} 1433 8 7



In aggregate, the observation in Tab. S1 validates that adversarial reprogramming attacks not only exist in the Euclidean
image domain, but are also effective in the non-Euclidean graph domain. This motivates our idea that flips the role of
adversarial reprogramming attack on its head, by paradoxically converting their function as threats to machine learning
systems to resource-efficient model reusing where only limited pre-trained models are available.

1.2. Aggregation Matters for Reusing

We provide in this section more explanations and discussions on Remark. 2 of the main manuscript, which suggest the
importance of adaptive aggregation methods in reusing GNNs:

Remark 2 (Aggregation Matters for Reusing). Various aggregators lead to diversified downstream task performance with
the same model. There exists an optimal aggregation method tailored for each pair of downstream tasks and pre-trained
models.

To validate Remark 2, we perform a pilot experiment, by dividing the Cora dataset into two subsets, with the first subset
containing four classes and the second one including three node categories. We pre-train a model on the first Cora subset and
obtain a frozen GNN that can predict the first four classes in Cora. Then, we aim to reuse this pre-trained model to handle
the task of node classification with the last three separate and unseen categories. The network architecture of the pre-trained
model on the first subset of Cora is demonstrated in Tab. S3.

Table S3. Detailed architectures used in the section of “Rationale Behind MERE”, corresponding to Fig. 2 of the main paper.

Architecture Layers Attention Heads Input Hidden Output
Pre-trained Model {Cora-subset} 2 {8, 1} 1433 8 4

Here, our goal is to validate the influence of aggregators in model reusing. As such, we adopt the simplest vanilla reusing
method, by just using the pre-trained model to directly handle the novel three downstream categories, but changing the
aggregation behaviors. The corresponding results of various aggregation methods are shown in Tab. S4, where we specifically
use eight prevalent aggregation methods as examples as mentioned in [3].

Table S4. Vanilla GNN reusing results on the Cora-subset dataset with various aggregation behaviors. The detailed
network architecture for producing the results can be found in Tab. S3.

Various Aggregation Methods Mean Max Min Std Var Skewness Kurtosis Hyperskewness
Downstream Performance (Acc) 0.4420 0.4203 0.5000 0.2536 0.2826 0.4022 0.2572 0.3696

Notably, the results in Tab. S4 show that various aggregation manners can lead to totally distinct model reusing results,
where the min aggregation method is optimal for our task of Cora-subset. Such observation leads to our idea of using
the task-adaptive aggregation method to enhance the model capability in different downstream tasks.

2. Dataset Statistics and Descriptions
We provide in Tab. S5 the statistics of several graph benchmarks used in the main manuscript.
Specifically, the first three datasets, i.e., Cora, Citeseer and Pubmed [8], are all citation network datasets used for

single-label node classification. Amazon Computers and Amazon Photo are the segments of the Amazon co-purchase graphs
from [6]. Moreover, ogbn-arxiv dataset contains a directed graph, which denotes the citation network among all Com-
puter Science (CS) papers in arXiv. ogbg-molesol, ogbg-molbace, and ogbg-molbbbp are all molecular property
prediction datasets. Besides, the QM7b dataset also aims at molecular property regression, comprising 7,211 molecules with
totally 14 regression targets, including E (PBE0), LUMO (PBE0), α (PBE0), LUMO (ZINDO), α (SCS), IP (ZINDO),
HOMO (GW), EA (ZINDO), HOMO (PBE0), E∗

1st (ZINDO), HOMO (ZINDO), E∗
max (ZINDO), LUMO (GW), and Imax

(ZINDO). The PROTEINS dataset, on the other hand, focuses on protein classification, such as enzymes or non-enzymes.
We also use a distributed human action recognition dataset using wearable motion sensor networks, termed as WARD, to

validate the proposed methods. There are five sensors used to capture the data in WARD. Every sensor generates 5 data streams
and in total 5× 5 data streams are produced. We will elaborate in Sect. 8 on how to construct graphs from the raw data and
convert the problem of action recognition into that of subgraph classification.

For the task of point cloud classification, we adopt the ModelNet40 dataset [17] as well as the ShapeNet part dataset
[19]. Specifically, the ModelNet40 dataset contains 12,311 CAD models of 40 man-made object categories, of which



Table S5. Summary of the fourteen datasets used in the main manuscript and supplementary material. Additional dataset
statistics for point cloud classification are shown in Tab. S6.

Names Task Descriptions Feature Dimensions Nodes Edges # Graphs
1. Cora [8] Machine-Learning Paper Classification 1,433 2,708 5,429 1
2. Citeseer [8] Computer-Science Paper Classification 3,703 3,327 4,732 1
3. Pubmed [8] Diabete-related Publication Classification 500 19,717 44,338 1
4. ogbn-arxiv [4, 13] Subject Area Prediction of arXiv Papers 128 169,343 1,166,243 1
5. Amazon Computers [6] Computer-Product Category Prediction 767 13,752 574,418 1
6. Amazon Photo [6] Photo-Product Category Prediction 745 7,650 287,326 1
7. QM7b [7] Molecule Property Regression 1 111,180 1,766,366 7,211
8. ogbg-molesol [4, 16] Molecule Property Regression 9 14,991 30,856 1,128
9. PROTEINS [1] Protein Property Prediction 3 43,471 205,559 1,113
10. ogbg-molbace [4, 16] Molecule Property Classification 9 51,577 111,539 1,513
11. ogbg-molbbbp [4, 16] Molecule Property Classification 9 49,068 105,842 2,039
12. WARD [12, 18] Distributed Human Action Recognition 125 3,521,550 15,846,975 35,2155
13. ModelNet40 [17] 3D Object Recognition 3 12,603,392 252,067,840 12,311
14. ShapeNet [19] 3D Object Recognition 3 17,286,144 345,722,880 16,881

9,843 CAD models are used for training and 2,468 CAD models are for testing. For each CAD model, we sample 1,024 3D
points from the mesh surfaces, as also done in [15]. Also, the ShapeNet part dataset contains 16,881 3D shapes from 16
categories. For each 3D shape, we also sample 1,024 points. Detailed class-by-class statistics of ShapeNet part dataset are
provided in Tab. S6.

Table S6. Detailed dataset statistics of the ShapeNet part dataset [19] for the task of point cloud classification.

Total Aero Bag Cap Car Chair Earphone Guitar Knife Lamp Laptop Motor Mug Pistol Rocket Skateboard Table
# shapes 16,881 2,690 76 55 898 3,758 69 787 392 1,547 451 202 184 283 66 152 5,271
# shape labels 16 – – – – – – – – – – – – – – – –

3. Additional Results on Heterogeneous Node Property Prediction
In this section, we provide additional results of using heterogeneous data reprogramming to tackle heterogeneous node

property prediction.

Implementation Details. In total, we use five datasets, Citeseer, Cora, Pubmed, Amazon Computers, and Amazon
Photo as examples to validate the effectiveness of the proposed approaches. In particular, we’d like to clarify that the dif-
ferent pre-trained models on various datasets have a maximum number of output dimensions, meaning that the number of
classes in the downstream datasets cannot exceed that of the pre-trained one. So, in Tab. 2 of the main manuscript where
we use Citeseer with six categories as the pre-trained task, we have to use the corresponding six categories for Cora,
Amazon Computers, and Amazon Photo.

For the sake of the consistency between the main manuscript and the supplementary material, when we use the datasets of
Cora, Amazon Computers, and Amazon Photo everywhere in this work, we consistently only use the first six target
classes of the corresponding datasets, as shown in Tab. S7. For the task of Pubmed with only three classes, we predict the
full target three classes, by simply using the corresponding three output neurons in the pre-trained Citeseer model for the
final prediction. Nevertheless, it is indeed possible to leverage the technique of adaptive prototype learning to alleviate the
dilemma of such output limits. However, due to the page limit, we have to elaborate on this part in our future work.

For the dataset splittings of Citeseer, Cora, Pubmed, we use the splitting protocol in [2]. Specifically, for Cora, we
use 1208 samples for training, 500 samples for validation, and 1000 samples for testing; for Citeseer, we use 1827 samples
for training, 500 samples for validation, and 1000 samples for testing; for Pubmed, 18217 samples are used for training,
500 samples are used for validation, and 1000 samples are used for testing. For Amazon Computers and Amazon



Photo, since there is no standard splitting protocol, in our experiment, we randomly split these two datasets with the ratio
of TrainingSet : ValidationSet : TestingSet = 6 : 2 : 2.

At the pre-training stage, the learning rate is set to 0.005. At the reusing stage, the ascent step size for optimizing the
padded features is set to 0.0001 with a weight decay of 5×10−4 by default. We use the Adam optimizer for both stages. The
results are obtained by computing the average of 20 independent runs. The network architectures are given in Tab. S7, which
follow the official architecture design in deep graph library [14] without specific modifications.

Table S7. Detailed network architectures for producing the results in Tab. 2 of the main manuscript and also those in Tabs. S8
and S9 of this supplementary material.

Pre-trained Architectures Layers Attention Heads Input Hidden Output Parameter Sizes
Citeseer 2 {8, 1} 3703 8 6 474,892
Cora 2 {8, 1} 1433 8 6 184,332
Amazon Computers 2 {8, 1} 767 8 6 99,084
Amazon Photo 2 {8, 1} 745 8 6 96,268

Ablation Studies. In Tab. S8 and Tab. S9, we demonstrate the results of the ablation studies with various pre-trained
GNNs, corresponding to Tab. 2 of the main manuscript. In particular, we use Cora and Amazon Computers as the
pre-trained tasks for Tab. S8 and Tab. S9, respectively. It is noticeable that the proposed method still achieves promising
results with different pre-trained models. For example, the three results of the downstream Amazon Photo task with the
pre-trained models Citeseer (Tab. 2 of the main paper), Cora (Tab. S8), and Amazon Computers (Tab. S9) are all
equally encouraging, showing that the proposed MetaFP and ReAgg methods make it possible for resource-efficient model
reusing under the scenarios of having only a limited number of pre-trained models.

Table S8. Ablation studies of using different pre-trained GNNs, corresponding to Tab. 2 in the main manuscript. Here,
we reuse a pre-trained node classification model on Cora to handle the tasks of Amazon Computers and Amazon
Computers with heterogeneous feature dimensions.

Pre-trained Task Cora
Heterogeneous Task Type Machine-Learning Paper Classification
Pre-trained Results Accuray: 0.9121
Downstream Tasks Amazon Computers Amazon Photo
Heterogeneous Task Types Computer-Product Category Prediction Photo-Product Category Prediction
Reusing Methods Vanilla Ours Vanilla Ours
Downstream Results Accuray: 0.1497 Accuray : 0.8792 Accuray: 0.1354 Accuray: 0.8785
Re-training from Scratch Accuray: 0.9485 Accuray: 0.9561

Table S9. Ablation studies of using a pre-trained computer-product category prediction model to tackle Amazon
Computers and Pubmed with various input dimensions, corresponding to Tab. 2 in the main manuscript.

Pre-trained Task Amazon Computers
Heterogeneous Task Type Computer-Product Category Prediction
Pre-trained Results Accuray: 0.9485
Downstream Tasks Amazon Photo Pubmed
Heterogeneous Task Types Photo-Product Category Prediction Diabete-Publication Classification
Reusing Methods Vanilla Ours Vanilla Ours
Downstream Results Accuray: 0.2012 Accuray: 0.9161 Accuray: 0.4270 Accuray : 0.8320
Re-training from Scratch Accuray: 0.9561 Accuray: 0.8840



4. Additional Results on Heterogeneous Graph Classification and Regression
In this section, we demonstrate more results of exploiting the heterogeneous data reprogramming method of MetaFP to

handle the heterogeneous cross-level graph classification and regression tasks.

Table S10. Network architectures for heterogeneous downstream graph classification and regression tasks, corresponding to
Tab. 4 in the main manuscript and also Tabs. S11 and S12 in this supplementary material.

Pre-trained Architectures Layers Attention Heads Input Hidden Output Parameter Sizes
Cora 2 {8, 1} 1433 8 6 184,332
Amazon Computers 2 {8, 1} 767 8 6 99,084
Amazon Photo 2 {8, 1} 745 8 6 96,268

Implementation Details. To demonstrate the effectiveness of the proposed methods for heterogeneous cross-level graph
analysis, here we use node classification models as the pre-trained ones, and reuse them to handle the task of heterogeneous
graph classification and regression. The network architectures of the pre-trained node property prediction models in Tab. 4
of the main manuscript and Tabs. S11 and S12 are provided in Tab. S10. Also, to address the issue of different output
dimensions of node-level and graph-level tasks, we adopt the slimmable strategy in dynamic networks, i.e., simply using the
part of the output neurons to generate the prediction results, and ignoring the other extra unaligned output dimensions.

The detailed dataset statistics of the various datasets used in this section can be found in Sect. 2. In the pre-training phase,
the experimental settings are the same as those in Sect. 3, i.e., with a learning rate of 0.005 and the Adam optimizer. During
model reusing, we set the ascent step size as 0.0001 with a weight decay of 5× 10−4.

Table S11. Ablation studies of reusing various pre-trained GNNs, corresponding to Tab. 4 in the main paper. Here, we pre-
train a model on Amazon Computers and then reuse it to tackle the graph regression task of QM7b as well as the graph
classification task of PROTEINS.

Pre-trained Task Amazon Computers
Heterogeneous Task Type Computer-Product Category Prediction
Pre-trained Results Accuray: 0.9485
Downstream Tasks QM7b PROTEINS
Heterogeneous Task Types Molecule Property Regression Protein Property Prediction
Reusing Methods Vanilla Ours Vanilla Ours
Downstream Results MAE: 13.1409 MAE : 2.4634 Accuray: 0.5268 Accuray: 0.6250
Re-training from Scratch MAE: 0.7264 Accuray: 0.6964

Table S12. Ablation studies of reusing a pre-trained node classification model on Amazon Photo to handle the unseen
graph-level regression and classification tasks of QM7b and PROTEINS, corresponding to Tab. 4 in the main paper.

Pre-trained Task Amazon Photo
Heterogeneous Task Type Photo-Product Category Prediction
Pre-trained Results Accuray: 0.9561
Downstream Tasks QM7b PROTEINS
Heterogeneous Task Types Molecule Property Regression Protein Property Prediction
Reusing Methods Vanilla Ours Vanilla Ours
Downstream Results MAE: 24.1829 MAE : 2.3093 Accuray: 0.3304 Accuray: 0.6071
Re-training from Scratch MAE: 0.7264 Accuray: 0.6964

Ablation Studies. We show in Tab. S11 and Tab. S12 the ablation study results of various pre-trained models for hetero-
geneous downstream graph classification and regression tasks, corresponding to Tab. 4 of the main manuscript. As can be
observed from Tabs. S11, S12 and Tab. 4 in the main paper, the proposed MetaFP approach delivers gratifying results with



all these three different pre-trained tasks of Amazon Computers, Amazon Photo, and Cora. Such observation vali-
dates the resource-efficient property of the proposed method in Sect. 3 again: getting rid of the restriction on well-provided
pertinent pre-trained models.

5. Additional Results on Homogenous Node Property Prediction
In this section, we illustrate additional results of leveraging the homogenous data reprogramming method of EdgSlim to

deal with the task of homogenous node property prediction.

Table S13. Network architectures used in Tab. 5 of the main manuscript and Tab. S14 of this supplementary material.

Pre-trained Architectures Layers Attention Heads Input Hidden Output Parameter Sizes
Architecture-ogbn-arxiv-V1 4 {8, 8, 8, 1} 128 8 20 35.75K
Architecture-ogbn-arxiv-V2 3 {8, 8, 1} 128 8 20 27.43K

Implementation Details. The architecture details for Tab. 5 of the main manuscript and Tab. S14 in this supplementary ma-
terial are provided in Tab. S13. In particular, Architecture-ogbn-arxiv-V1 and Architecture-ogbn-arxiv-V2
represent the two distinct pre-trained architectures used in the ablation studies in Tab. S14. The dataset details can be found in
Tab. S5. Here, we divide the ogbn-arxiv dataset into two subsets, termed as ogbn-arxiv-s1 and ogbn-arxiv-s2,
where each subset contains 20 separate categories in the full ogbn-arxiv dataset. The pre-trained task is to predict the 20
classes in ogbn-arxiv-s1, whereas the downstream task is to classify the distinct 20 categories in ogbn-arxiv-s2.
During pre-training, we use the Adam optimizer, with a learning rate of 0.005 and a weight decay of 5× 10−4, which are the
same as other datasets without specific modifications or hyperparameter tuning.

Table S14. Ablation studies of reusing the pre-trained node classification models on ogbn-arxiv with various network
architectures elaborated in Tab. S13.

Architectures Types Model Parameter Sizes Pre-trained Reusing Performance
Performance Vanilla Ours

Architecture-ogbn-arxiv-V1 Pre-trained Acc 35.75K 0.7884 N/A N/A
Architecture-ogbn-arxiv-V1 Downstream Acc 35.75K N/A 0.2334 0.6034
Architecture-ogbn-arxiv-V2 Pre-trained Acc 27.43K 0.7849 N/A N/A
Architecture-ogbn-arxiv-V2 Downstream Acc 27.43K N/A 0.2191 0.5507

Ablation Studies. Tab. S14 demonstrates the results of the ablation studies of different pre-trained architectures. As can
be observed from the last column of Tab. S14, the proposed EdgSlim leads to promising downstream performance without
re-training or fine-tuning and outperforms the results of vanilla reusing by at least 30%. Also, the results are obtained at a
low computational cost, with only three epochs. The physical edge elimination time is even less than one second for both
architectures on a single NVIDIA GeForce RTX 2080 Ti GPU.

6. Additional Results on Homogenous Graph Classification and Regression
In this section, we give more results of applying the proposed homogenous data reprogramming approach of MetaGP to

tackle the downstream tasks of homogenous node property prediction.

Implementation Details. To demonstrate the effectiveness of the proposed MetaGP method under the scenarios of ho-
mogenous graph classification and regression with homogenous input dimensions, we specifically use the three datasets of
ogbg-molbace, ogbg-molbbbp, and ogbg-molesol that aim to classify or regress the graph properties, with more
detailed statistics and descriptions in Sect. 2. The architecture details are provided in Tab. S15. In particular, different from
the node classification task, the output layer of the graph-level tasks are linear layers. The learning rate setting is set to 0.005,
with a weight decay of 5× 10−4, which is the same as other experiments. We use the Adam optimizer for pre-training.



Table S15. Network architectures for producing the results in Tab. 6 of the main manuscript and also those in Tab. S16 in this
supplementary material.

Pre-trained Architectures Layers Attention Heads Output Layer Input Hidden Output Parameter Sizes
ogbg-molbace 4 {1, 1, 1} Linear 9 256 1 69.63K
ogbg-molbbbp 4 {1, 1, 1} Linear 9 256 1 69.63K

Ablation Studies. We show in Tab. S16 the ablation studies of varying pre-trained models. In particular, instead of using
ogbg-molbace as the pre-trained task as Tab. 6 in the main manuscript does, here we perform extensive ablation studies by
pre-training a GNN on ogbg-molbbbp and considering ogbg-molbace as the downstream tasks. The results in Tab. S16
demonstrate that the proposed MetaGP is competent for various-domain downstream tasks even with different pre-trained
models. As such, our method is readily applicable to scenarios where there is a limited number of pre-trained GNNs.

Table S16. Ablation studies of reusing different pre-trained GNNs, corresponding to Tab. 6 in the main manuscript. Here,
the pre-trained model is designated for ogbg-molbbbp, whereas ogbg-molbace and ogbg-molesol are considered
as the two target downstream tasks.

Pre-trained Task ogbg-molbbbp

Homogenous Task Type Graph Classification
Pre-trained Results ROC-AUC: 0.6709
Downstream Tasks ogbg-molbace ogbg-molesol

Homogenous Task Types Graph Classification Graph Regression
Reusing Methods Vanilla Ours Vanilla Ours
Downstream Results ROC-AUC: 0.4330 ROC-AUC: 0.5903 RMSE: 7.979 RMSE: 2.8183
Re-training from Scratch ROC-AUC: 0.7734 RMSE: 1.300

7. Additional Results on 3D Object Recognition
In this section, we give more implementation details and more visualization results for the task of point cloud classification

with ModelNet40 and ShapeNet.

Implementation Details. In addition to node classification, graph classification, and graph regression tasks with citation
networks and molecular graphs, we also conduct extensive experiments by reusing a GNN for 3D object recognition tasks.
Here, we adopt two prevalent point cloud classification datasets, entitled ModelNet40 and ShapeNet, of which the de-
tailed statistics can be found in Tab. S5. We follow the official dataset splitting protocol in [15,17], where 9,843 CAD models
are used for training and 2,468 CAD models are for testing in pre-training. For each CAD model in both ModelNet40 and
ShapeNet, we sample 1,024 3D points from the mesh surfaces and also rescale the associated coordinates to fit into the unit
sphere, as also done in [15]. The learning rate is set as 0.001 and the batch size is set to 16. We adopt the Adam optimizer [5].
The detailed architecture designs are summarized in Tab. S17. During the reusing stage, since ModelNet40 contains 40
categories whereas ShapeNet has 16 classes, we simply use the first 16 output channels of the pre-trained ModelNet40
as the output predictions for ShapeNet.

Table S17. Detailed network architectures for the task of 3D object recognition on ModelNet40 and ShapeNet.

Pre-trained Models Layers GNN Type Feature Map Channels MLPs
Architecture-ModelNet40 8 EdgeConv [64, 64, 128, 256, 1024] [512, 256, 40]

More Visualization Results. In Fig. S3, we show more qualitative results of reusing GNNs for point cloud classification,
by visualizing the structures of the feature spaces, corresponding to Fig. 6 of the main manuscript. The column termed
“Vanilla” in Fig. S3 contains the results of vanilla model reusing, corresponding to “Vanilla” in Tab. 7 of the main manuscript.
Meanwhile, the columns termed “Our” and “Re-train” in Fig. S3 indicate the results with the proposed MetaGP and those



of re-training from scratch, respectively. It can be observed that the proposed method yields results that have a very similar
feature structure to those of the cumbersome re-training ones, demonstrating the superiority of our approach.

8. Additional Results on Distributed Action Recognition
In this section, we provide more implementation details, as well as extensive ablation studies to validate the effectiveness

of the proposed method on the task of distributed human action recognition.

Figure S2. Illustrations of sensor
positions (image credited to [11]).

Graph Construction from Time-series Data. To validate the effectiveness of
the proposed method on the task of distributed action recognition, the first step is to
transform the time-series data corresponding to different actions into graphs.

We begin our explanation of how to construct the graphs by firstly introducing
the used action recognition dataset. The distributed human action recognition using
wearable motion sensor network dataset WARD [18] is captured with five sensors.
Each tensor has a triaxial accelerometer and a biaxial gyroscope. The sensors are
at the left and right forearms, waist, left and right ankles, respectively, as shown in
Fig. S2. Every sensor outputs 5 data streams. As such, totally 5 × 5 data streams
are captured. Each data stream is recorded at 30Hz from humans with thirteen daily
action categories.

For the construction of the graphs from WARD, as also done in [12], we use every
25 sequential data points from a single sensor as a node, and combine the nodes for every 50 sequential points into a graph
in a fully-connected manner. As such, we can obtain a temporally growing graph, where every node is associated with a
5-channel 1-D signal xi

t ∈ R25×5, with i = 1, 2 . . . 5 denoting the sensor index and t = 1, 2 . . . T representing the time
index. All the nodes at the adjacent time index are also connected, resulting in a fully connected graph with ten nodes. As
such, we can readily transform the problem of distributed human action recognition into that of graph classification that can
be handled by the typical GNN models.

Implementation Details. The detailed architectures corresponding to Tab. 8 of the main manuscript and Tab. S19 in this
supplementary material are provided in Tab. S18. In our experiment, we randomly select 8 action categories as pre-trained
tasks and 5 human action classes as the downstream tasks. For GCN, we use the SGD optimizer, whereas for GAT, we adopt
the Adam optimizer, as also done in [11]. The fixed model is pre-trained with a learning rate of 1× 10−3 and a batch size of
100. Similar to other graph-level analyses, we use a linear layer as the output layer for action prediction.

Table S18. Detailed network architectures of reusing a GNN to handle the downstream distributed action recognition tasks.

Pre-trained Architectures Layers Attention Heads Output Layer Input Hidden Output Parameter Sizes
GCN 3 - Linear 125 384 8 16,807
GAT 3 {1, 1} Linear 125 384 8 16,881

Ablation Studies. We perform extensive ablation studies in Tab. S19 by validating the effectiveness of the proposed
MetaGP method with various GNN types, with GCN in Tab. 8 of the main paper and GAT in Tab. S19 of the supplemen-
tary material. Notably, the proposed method delivers gratifying performance with both the GCN and GAT architectures,
without any re-training nor fine-tuning.

Table S19. Ablation studies of model reusing with heterogeneous-type GNNs on the task of distributed human action recog-
nition, such as the GCN and GAT mechanisms, corresponding to Tab. 8 of the main manuscript.

Tasks Pre-trained Action Categories
Up ReLi WaLe TuLe Down Jog Push ReSt Overall Acc

Pre-trained Acc (GAT [10]) 0.9928 0.8969 0.9921 0.9904 0.9704 0.9962 0.9694 0.9757 0.9675

Tasks Downstream Action Categories
ReSi WaFo TuRi WaRi Jump Overall Acc Acc

Downstream Acc (GAT [10]) 0.4709 0.8041 0.3697 0.6404 0.6008 0.6117



Near Far

Vanilla Ours Re-train Vanilla Ours Re-train Vanilla Ours Re-train

Figure S3. Visualization results of the structures of the feature space, depicted as the distance between the red point and the
rest of the others. The visualized features are extracted from the intermediate layer of the models.
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nets. NeurIPS, 2020. 4
[4] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta, and Jure Leskovec. Open graph

benchmark: Datasets for machine learning on graphs. arXiv preprint arXiv:2005.00687, 2020. 5
[5] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR, 2015. 9
[6] Julian McAuley, Christopher Targett, Qinfeng Shi, and Anton Van Den Hengel. Image-based recommendations on styles and substi-

tutes. In SIGIR, 2015. 4, 5
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