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1. Further Implementation Details
This section provides additional implementation details

of our method. For the sake of completeness, we also reit-
erate the points mentioned in the main article.

The truncation distance T is set to 6 cm in our method.
We employ coarse feature planes with a resolution of 24 cm
for both geometry and appearance. For fine feature planes,
we use a resolution of 6 cm for geometry and 3 cm for ap-
pearance. All feature planes have 32 channels, resulting in
a 64-channel concatenated feature input for the decoders.
The decoders are two-layer MLPs with 32 channels in the
hidden layer. ReLU activation function is used for the hid-
den layer, and Tanh and Sigmoid are respectively used for
the output layers of TSDF and raw colors.

We use different set of loss coefficients for mapping and
tracking. During mapping we set λfs = 5, λT -m = 200,
λT -t = 10, λd = 0.1, and λc = 5. And during tracking,
we set λfs = 10, λT -m = 200, λT -t = 50, λd = 1, and
λc = 5. These coefficients are obtained by performing grid
search in our experiments.

For the scenes from Replica [5], we sample Nstrat = 32
points for stratified sampling and Nimp = 8 points for im-
portance sampling on each ray. We perform 15 optimization
iterations for mapping and randomly select 4000 rays for
each iteration. For camera tracking, 2000 rays are chosen at
random and 8 optimization iterations are performed. Since
ScanNet’s [1] scenes are at a larger scale and more challeng-
ing, we set Nstrat = 48 and Nimp = 8. Also, we perform
30 optimization iterations for both mapping and tracking
in ScanNet’s [1] scenes. For the scenes in TUM RGB-D
dataset [6], we similarly set Nstrat = 48 and Nimp = 8.
For this dataset, We perform 60 optimization iterations for
mapping and 200 optimization iterations for tracking, and
we randomly sample 5000 rays for each iteration.

We initiate the mapping process every 4 input frames and
use a window of W = 20 keyframes for jointly optimiz-
ing the feature planes, MLP decoders, and camera poses of
the selected keyframes. We use Adam [2] for optimizing

all learnable parameters of our method and set the learning
rates according to a simple grid search in our experiments.
We use a learning rate of 0.001 for the MLP decoders and a
learning rate of 0.005 for the feature planes. We always use
a learning rate of 0.001 for the camera poses, i.e. rotation
and translation {R, t}, of the selected keyframes during the
joint optimization of the mapping step. During the track-
ing step in the Replica’s [5] scenes, we use a learning rate
of 0.001 for camera rotation and translation. For camera
tracking in the scenes of ScanNet [1], we use a learning
rate of 0.0005 for camera translation and a learning rate of
0.0025 for camera rotation. Lastly, For camera tracking in
the scenes of TUM RGB-D [6], we use a learning rate of
0.01 for camera translation and a learning rate of 0.002 for
camera rotation. We model the camera rotation parameters
with quaternions [4].

Once all input frames are processed, and for evaluation
purposes, we build a TSDF volume for each scene and use
the marching cubes algorithm [3] to obtain 3D meshes. We
do not employ any post-processing for our representation
or extracted meshes except that for quantitative evaluation,
we cull faces from a mesh that are not inside any camera
frustum or are occluded in all RGB-D frames. To ensure
fairness, we do the same mesh culling before evaluating the
previous approaches.

2. Ablation Study

In this section, we conduct various experiments to show
the robustness of our method in different experimental set-
tings and to validate our architecture design choices.

Robustness to Depth Quality. In this experiment, we
evaluate how robust the methods are to the quality of in-
put depths. Accordingly, we downsample input depths of
room0 of the replica dataset [5] to 1

8 of the original reso-
lution. The results in Tab. 1 reveal that our method’s recon-
struction and localization are less sensitive to the resolution
of input depth maps.



Method ATE↓ Acc.↓ Comp.↓
1
1

D
NICE-SLAM [8] 1.69 1.71 1.69
ESLAM (ours) 0.71 1.07 1.12

1
8

D
NICE-SLAM [8] 2.01 2.18 1.98
ESLAM (ours) 0.72 1.16 1.23

Table 1. Robustness to depth resolution comparison of our method
with NICE-SLAM [8] in terms of ATE RMSE (cm), reconstruc-
tion accuracy (cm), and reconstruction completion (cm) on room0
of the Replica [5] dataset. Our method’s accuracy is less affected
when input depth is downsampled by a factor of 1

8
.

Method ATE↓ Acc.↓ Comp.↓
NICE-SLAM [8] 1.69 1.71 1.69
NICE-SLAM w/ Our Key. Policy 1.65 1.68 1.66

Table 2. Analysis of the impact of our keyframe updating policy
on NICE-SLAM [8] (Sec. 3.4 in the main paper). The experi-
ment is conducted on room0 of Replica [5], and the metrics are
ATE RMSE (cm), reconstruction accuracy (cm), and reconstruc-
tion completion (cm). NICE-SLAM [8] only slightly benefits from
our updating policy.

Keyframe Policy. Whenever we perform a mapping step
for an input frame, we always include that frame in our
global keyframe list (see Sec. 3.4 in the main paper). NICE-
SLAM [8], on the other hand, only updates its keyframe
list once per 10 mapping steps. To make sure that our
evaluations are fair, we also run NICE-SLAM [8] with our
own keyframe updating policy on room0 of the Replica [5]
dataset. The results in Tab. 2 show that NICE-SLAM [8]
only slightly benefits from this updating policy.

Our Design Choices. We conduct multiple experiments in
Tab. 3 to defend our design choices in ESLAM. These ex-
periments are conducted on the scenes in the Replica [5]
and ScanNet [1] datasets, and the details of the experimen-
tal settings are as follows. (a) We use shared feature planes
for geometry and appearance (see Sec. 3.1 and Fig. 2 in
the main paper). (b) We only employ coarse feature planes
(see Sec. 3.1 and Fig. 2 in the main paper). (c) We only
employ fine feature planes (see Sec. 3.1 and Fig. 2 in the
main paper). (d) We add the interpolated coarse f c

∗(pn)

and fine ff
∗ (pn) features instead of concatenating them (see

Sec. 3.1 and Fig. 2 in the main paper). (e) We discard impor-
tance sampling and use stratified sampling for all N points
on a ray (see Sec. 3.2 in the main paper). (f) We only exploit
depth inputs and discard color rendering and RGB inputs
(see Sec. 3.2 in the main paper). (g) We do not consider
separate loss functions for the points that are at the tail of
the truncation region PT -t

r and for the points that are in the
middle PT -m

r (see Sec. 3.3 in the main paper). (h) We do not
jointly optimize camera poses during the mapping step (see
Sec. 3.4 in the main paper). (i) We evaluate our full model.
Note that due to the incompleteness of ScanNet’s [1] ground

truth meshes, we only evaluate localization accuracy on this
dataset.

3. Additional Qualitative Analysis
This section provides additional qualitative analysis to

contrast the capability of our method to preserve scene de-
tails in comparison to previous NeRF-based dense visual
SLAM methods, iMAP∗ [7] and NICE-SLAM [8]. We pro-
vide this analysis on the Replica dataset [5] in Fig. 1 with
both textured and untextured meshes. The results demon-
strate that our method produces more accurate meshes with
fewer artifacts.

4. Per-Scene Breakdown of the Results
In this section, we breakdown the quantitative analysis

of Tab. 1 in the main paper into a per-scene analysis. Tab. 4
shows the per-scene quantitative evaluation of our method
in comparison with iMAP∗ [7] and NICE-SLAM [8] on
the Replica dataset [5]. As it is shown in Tab. 4, our
method outperforms previous approaches in all scenes of
Replica [5]. Also, lower variances in our experiments are an
indication that our method is more stable from run to run.

5. Effect of Frame Processing Time
In this section, we investigate the trade-off between

frame processing time and our method’s reconstruction and
localization accuracy. In this study, we increase the num-
ber of optimization iterations during the mapping and track-
ing. By default, our ESLAM method performs Iterm = 15
optimization iterations during mapping and Itert = 8 op-
timization iterations during tracking for the scenes of the
Replica dataset [5]. We define ESLAM x2 as our method
when we double the number of optimization iterations, i.e.
Iterm = 30 and Itert = 16. And similarly, we de-
fine ESLAM x10 as our method with Iterm = 150 and
Itert = 80.

Tab. 5 provides a quantitative analysis of ESLAM x2
and ESLAM x10, as well as a comparison with our de-
fault ESLAM method and existing approaches. The results
show that at the cost of increased frame processing time,
our method yields more accurate scene reconstruction and
camera trajectory. It should be noted that even ESLAM x10
runs faster than the existing state-of-the-art method, NICE-
SLAM [8].

Fig. 2 provides a qualitative analysis of ESLAM x10
compared to our default ESLAM method. In this analysis,
we render the scenes with untextured meshes to contrast the
quality of geometry reconstruction. While the quality dif-
ference is subtle, Fig. 2 indicates that increasing the number
of optimization iterations results in more accurate geometry
reconstruction and smoother surfaces.



Experiment ScanNet [1] Replica [5]
ATE↓ ATE↓ Accuracy↓ Compeletion↓

a. Using shared feature planes for geometry and appearance. 7.49 0.65 0.99 1.08
b. Using only the coarse planes and discarding the fine ones. 7.53 0.97 1.12 1.29
c. Using only the fine planes and discarding the coarse ones. 8.27 0.72 1.00 1.09
d. Replacing the concatenation with a summation. 7.55 0.64 0.98 1.07
e. No importance sampling. 7.44 0.67 1.08 1.14
f. No color rendering. 8.31 0.68 1.03 1.08
g. One loss function for the whole truncation region. 8.28 0.71 1.01 1.10
h. No camera pose optimization during mapping. 11.27 4.85 2.23 2.21
i. Full ESLAM method. 7.38 0.63 0.97 1.05

Table 3. Ablation study of our design choices on the ScanNet [1] and Replica [5] datasets. The metrics are ATE RMSE (cm), reconstruction
accuracy (cm), and reconstruction completion (cm). For the details of this study, see Sec. 2.

Methods Reconstruction (cm) Localization (cm)
Depth L1↓ Acc.↓ Comp.↓ Comp. Ratio (%)↑ ATE Mean↓ ATE RMSE↓

ro
om

0 iMAP∗ [7] 6.56 ± 0.39 5.89 ± 0.19 6.07 ± 0.22 66.55 ± 1.58 3.12 ± 0.84 5.23 ± 1.41
NICE-SLAM [8] 2.77 ± 0.13 1.71 ± 0.03 1.69 ± 0.03 97.61 ± 0.09 1.43 ± 0.09 1.69 ± 0.17
ESLAM (Ours) 0.97 ± 0.04 1.07 ± 0.01 1.12 ± 0.01 99.06 ± 0.05 0.61 ± 0.06 0.71 ± 0.13

ro
om

1 iMAP∗ [7] 5.97 ± 1.14 5.71 ± 0.31 5.57 ± 0.40 66.04 ± 3.45 2.54 ± 0.37 3.09 ± 0.48
NICE-SLAM [8] 2.52 ± 0.11 1.36 ± 0.03 1.34 ± 0.04 98.60 ± 0.14 1.70 ± 0.29 2.13 ± 0.24
ESLAM (Ours) 1.07 ± 0.07 0.85 ± 0.01 0.88 ± 0.01 99.64 ± 0.06 0.56 ± 0.02 0.70 ± 0.02

ro
om

2 iMAP∗ [7] 7.82 ± 0.94 6.34 ± 0.32 5.47 ± 0.27 69.87 ± 4.15 2.31 ± 0.20 2.58 ± 0.19
NICE-SLAM [8] 3.54 ± 0.35 1.75 ± 0.06 1.71 ± 0.03 96.52 ± 0.26 1.41 ± 0.24 1.87 ± 0.39
ESLAM (Ours) 1.28 ± 0.07 0.93 ± 0.01 1.05 ± 0.01 98.84 ± 0.06 0.43 ± 0.01 0.52 ± 0.01

of
fic

e0 iMAP∗ [7] 7.57 ± 0.70 7.44 ± 0.26 5.13 ± 0.37 70.97 ± 3.52 1.69 ± 1.06 2.40 ± 1.05
NICE-SLAM [8] 2.17 ± 0.14 1.43 ± 0.06 1.56 ± 0.05 96.30 ± 0.33 1.12 ± 0.22 1.26 ± 0.24
ESLAM (Ours) 0.86 ± 0.02 0.85 ± 0.01 0.96 ± 0.01 98.34 ± 0.05 0.42 ± 0.03 0.57 ± 0.04

of
fic

e1 iMAP∗ [7] 8.91 ± 0.65 10.34 ± 0.15 5.58 ± 0.24 72.08 ± 3.21 1.03 ± 0.17 1.17 ± 0.25
NICE-SLAM [8] 2.41 ± 0.11 1.16 ± 0.07 1.15 ± 0.03 98.04 ± 0.19 0.74 ± 0.19 0.84 ± 0.17
ESLAM (Ours) 1.26 ± 0.02 0.83 ± 0.06 0.81 ± 0.01 98.85 ± 0.08 0.46 ± 0.05 0.55 ± 0.04

of
fic

e2 iMAP∗ [7] 11.04 ± 0.69 9.15 ± 0.39 6.27 ± 0.37 62.24 ± 2.62 3.99 ± 0.98 5.67 ± 1.82
NICE-SLAM [8] 4.96 ± 0.58 1.83 ± 0.07 1.72 ± 0.03 96.96 ± 0.25 1.42 ± 0.10 1.71 ± 0.14
ESLAM (Ours) 1.71 ± 0.07 1.02 ± 0.01 1.09 ± 0.01 98.60 ± 0.12 0.47 ± 0.03 0.58 ± 0.09

of
fic

e3 iMAP∗ [7] 10.12 ± 1.31 7.14 ± 0.27 6.02 ± 0.20 66.07 ± 1.65 4.05 ± 0.93 5.08 ± 1.37
NICE-SLAM [8] 4.91 ± 0.70 2.24 ± 0.17 2.17 ± 0.05 93.08 ± 0.40 2.31 ± 0.51 3.98 ± 1.79
ESLAM (Ours) 1.43 ± 0.05 1.21 ± 0.01 1.42 ± 0.01 96.80 ± 0.03 0.61 ± 0.03 0.72 ± 0.02

of
fic

e4 iMAP∗ [7] 7.85 ± 1.32 5.32 ± 0.18 6.51 ± 0.20 63.63 ± 1.39 1.93 ± 0.21 2.23 ± 0.35
NICE-SLAM [8] 3.81 ± 0.74 2.09 ± 0.16 2.03 ± 0.17 95.00 ± 1.31 2.22 ± 0.68 2.82 ± 0.71
ESLAM (Ours) 1.06 ± 0.08 1.15 ± 0.02 1.27 ± 0.01 97.65 ± 0.14 0.52 ± 0.02 0.63 ± 0.03

A
ve

ra
ge iMAP∗ [7] 8.23 ± 0.88 7.16 ± 0.26 5.83 ± 0.27 67.17 ± 2.70 2.59 ± 0.58 3.42 ± 0.87

NICE-SLAM [8] 3.29 ± 0.33 1.66 ± 0.07 1.63 ± 0.05 96.74 ± 0.36 1.56 ± 0.29 2.05 ± 0.45
ESLAM (Ours) 1.18 ± 0.05 0.97 ± 0.02 1.05 ± 0.01 98.60 ± 0.07 0.52 ± 0.03 0.63 ± 0.05

Table 4. Per-scene quantitative comparison of our proposed ESLAM with existing NeRF-based dense visual SLAM models on the Replica
dataset [5] for both reconstruction and localization accuracy. The results are the average and standard deviation of five independent runs on
each scene of the Replica dataset [5]. Our method outperforms previous works by a high margin and has lower variances, indicating it is
also more stable from run to run. The evaluation metrics for reconstruction are L1 loss (cm) between rendered and ground truth depth maps
of 1000 random camera poses, reconstruction accuracy (cm), reconstruction completion (cm), and completion ratio (%). The evaluation
metrics for localization are mean and RMSE of ATE (cm) [6]. It should also be noted that our method runs up to ×10 faster on this dataset
(see Sec. 4.2 in the main paper for runtime analysis).



Figure 1. Qualitative comparison of our method’s scene reconstruction with iMAP∗ [7] and NICE-SLAM [8] on Replica [5]. Our method
produces more accurate detailed geometry as well as higher-quality textures. The scenes are rendered with both textured and untextured
meshes and the ground truth textured images are rendered with the ReplicaViewer software [5]. It should also be noted that our method
runs up to ×10 faster on this dataset (see Sec. 4.2 in the main paper for runtime analysis).



Method Optimization Iterations Acc. (cm)↓ Comp. (cm)↓ ATE (cm)↓ FPT (s)↓
iMAP∗ [7] - 7.16 5.83 3.42 5.20
NICE-SLAM [8] - 1.66 1.63 2.05 2.10
ESLAM (ours) Iterm = 15, Itert = 8 0.97 1.05 0.63 0.18
ESLAM x2 (ours) Iterm = 30, Itert = 16 0.95 1.03 0.42 0.35
ESLAM x10 (ours) Iterm = 150, Itert = 80 0.92 1.01 0.31 1.72

Table 5. Quantitative analysis of the effect of the number of optimization iterations during mapping and tracking on our method’s recon-
struction and localization accuracy. Iterm stands for the number of optimization iterations during mapping, and Itert denotes the number
of optimization iterations during tracking. The evaluation metrics are reconstruction accuracy (cm), reconstruction completion (cm), and
ATE RMSE (cm) [6]. Average Frame Processing Time (FTP) is also shown to highlight the trade-off between the accuracy and throughput
of our method. For reference, we reiterate the performance of the existing approaches, iMAP∗ [7] and NICE-SLAM [8]. It should be
noted that even ESLAM x10 runs faster than the existing state-of-the-art method, NICE-SLAM [8]. Refer to Sec. 5 for the details of this
experiment, and see Fig. 2 for the qualitative analysis.

Figure 2. Qualitative analysis of the effect of the number of optimization iterations during mapping and tracking on our method’s recon-
struction quality. ESLAM x10 is our method when we multiply the number of optimization iterations by 10. Refer to Sec. 5 for the details
of this experiment, and see Tab. 5 for the quantitative analysis.
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