
Supplemental Material: Self-Supervised Representation Learning for CAD

Benjamin T. Jones1 Michael Hu1 Milin Kodnongbua 1 Vladimir G. Kim2 Adriana Schulz1

1University of Washington 2Adobe Research
{benjones, mkhu, milink, adriana}@cs.washington.edu vokim@adobe.com

A. Representation Learning Architecture
Input Encodings. Each topological entity is initially en-
coded as a vector encoding its parametric geometry and that
geometry’s relationship to the topological entity. The three
dimensions of entity; face, edge, and vertex, each have their
own unique encoding of their own size, illustrated in Fig-
ure 1.

Surface Type Origin Normal Axis X-Axis Radius Minor Radius Half-Angle

One Hot (5) 3 x Float Float

Orientation

Boolean

Curve Type Origin Direction Axis X-Axis Radius Minor Radius

One Hot (3) 3 x Float Float

Orientation

Boolean

Position

3 x Float

Faces:

Edges:

Vertices:

Figure 1. Input encodings for the 3 different topology types. Not
all surface and curve types use all of the available parameters; un-
used parameters are encoded as zeros.

We want a common, fixed size for each level of topol-
ogy input vetor, so we limit our input to B-Reps that have
geometry with a fixed number of parameters: planes, cylin-
ders, cones, spheres, and tori for surfaces, and lines, circles,
and ellipses for edges. We validated this choice by filter-
ing the parts in the Fusion 360 Segmentation and Automate
datasets [3, 4] and found that 77% and 72%, respectively,
contained only these primitives.

Surfaces types use the following parameters:

• Plane: Origin, Normal, X-Axis

• Cylinder: Origin, Axis, X-Axis, Radius

• Cone: Origin, Axis, X-Axis, Radius, Half-Angle

• Sphere: Origin, Axis, X-Axis, Radius

• Torus: Origin, Axis, X-Axis, Radius, Minor Radius

Orientation is common to all faces, and is a boolean
value indicating if the surface normal is parallel or anti-
parallel to the face normal.

Curve types use the following parameters:

• Line: Origin, Direction, X-Axis

• Circle: Origin, Axis, X-Axis, Radius

• Ellipse: Origin, Axis, X-Axis, Radius, Minor Radius

Orientation is common to all edges, and is a boolean
value indicating if the curve parameterization is the same
as, or reversed from, the edge’s. This is important because
curve orientation is necessary to determine the inside versus
outside of bounded faces.

We re-parameterize plane, cylinder, and line geometries
so that the origin coordinate is as close to the coordinate
system origin as possible. This is done because CAD pro-
grams often choose origins far from the actual geometric
position. Prior work has dealt with this by omitting these
parameters [3].

Face, edge, and vertex input encodings are collected into
3 input matrices; F (0), E(0), and V (0) for use in an ad-
jacency list representation of the B-Rep graph. Two ad-
jacency lists are used to represent the multi-partite graph;
−−→
V E mapping vertices to the edges they bound, and

−−→
EF ,

mapping edges to faces they bound. Edge graph adja-
cency has an associated boolean orientation feature, O(e),
e ∈

−−→
V E∪

−−→
EF . For

−−→
V E this indicates if a vertex is a start or

end point of the associated edge, and for
−−→
EF it represents if

the inside of the associated face is on the left or right of the
edge, relative to the edge’s parameterization direction.

Encoder. We structure our encoder as a hierarchical mes-
sage passing network, inspired by the upwards pass of SB-
GCN, but using graph attention message passing with edge
features (adapted from [7] and implemented in PyG [2]), al-
lowing us to incorporate the adjacency features, as well as
omit the input MLPs used by SB-GCN. The full encoder
architecture is shown on the left half of Figure 2.

Decoder. Our decoder is modeling a function that maps
(u, v) coordinates to (x, y, z) positions plus a clipping mask
SDF d conditioned on a face code f ∈ F (1). We parameter-
ize this as a 4-layer, fully connected ReLu network similar

1

Input
B-Rep Encoder Decoder

||

Figure 2. Our geometric self-supervision encoder and decoder ar-
chitecture. ∥ denotes concatenation, and AGCN(S,H) is a graph
message passing layer with embedding size S and H-headed at-
tention. We use H = 2 attention heads for

−−→
V E since edges have

at most two vertices, and H = 16 for
−−→
EF because we observed

greater performance with many attention heads, and 16 was an
empirically determined balance between model size and accuracy.

++

+ :

Figure 3. Few-Shot segmentation architecture. C denotes the
number of classes, and P the output logits. In the inset, fi and
fj denote rows of the feature matrix F , and N−−→

FF
(i) denotes the

neighbors of node i in adjacency list
−→
FF .

to that of DeepSDF [6], as shown on the right side of Fig-
ure 2.

B. Few-Shot Learning Architectures
Segmentation Our segmentation architecture takes as in-
put the learned face embeddings F (1) from our representa-
tion learning, and the B-Rep face-to-face adjacencies

−−→
FF ,

and consists of two Residual MR-GCN graph message pass-
ing layers [5], followed by a 2 layer LeakyReLu MLP, pic-
tured in Figure 3.

Classification Our classification architecture takes as in-
put the learned faces embeddings F (1) and consists of two
linear layers separated by a max-pool and LeakyReLu, pic-
tured in Figure 4.

C. Biased SDF Sampling
To facilitate training of the neural implicit part of our

geometric self supervision, we want to preferentially sam-
ple each face’s parameter space near clipping mask bound-
aries, and to approximate the distance to boundaries. Nei-
ther of these operations are supported natively by CAD ker-
nels (OpenCascade in our case [1]). They do, however, sup-
port efficiently querying if a point in a surface parameteri-

Figure 4. Few-Shot classification architecture. C denotes the num-
ber of classes, and P the output logits.

Figure 5. Unsupervised part retrieval on Fusion 360 Segmentation
Test set. Query on left, 10 nearest neighbors, sorted from closest
to furthest on right.

zation is inside or outside the clipping function. Therefore,
we approximate the SDF by sampling a large number of uv-
points (5000) and matching each inside and outside point to
its nearest neighbor in the opposite set using a KD-Tree to
accelerate these queries. We keep N = 500 of these points
on each face for training. To bias our sample towards the 0-
level set, as is common when training implicit SDFs [6], we
sort by |d|, task 40% of our sample to be the points nearest
to the boundary, and randomly sample the rest.

D. Unsupervised Part Retrieval
Although our embeddings are computed per face rather

than per-part, we have found that the face embeddings are
still useful for part-level retrieval. We max-pooled face em-
beddings across each part to form a part embedding and
used these to find nearest neighbors with the Fusion 360
Segmentation Test set. ?? shows the 10 nearest neighbors
for a diverse collection of part queries, showing qualita-
tively that face-level embeddings can be used to search for
similar parts.

E. Ablations
Self-Supervision Ablations. In addition to the network
described in Section 3 of the main paper, we also tried using
a truncated SB-GCN (only its upwards pass) as the encoder
network, using the same shape parameter input features. We
evaluate both explicit surface and SDF accuracy in Table 1
and see that our architecture significantly outperforms SB-
GCN for both measures.

Model XYZ Error SDF Error

Ours 0.0256 0.0147
SB-GCN 0.035 0.0214

Table 1. Self-Supervision ablations. XYZ Error is the average
pointwise distance between predicted and sampled surface posi-
tion. SDF Error is the average absolute difference between pre-
dicted and actual SDF value.

Segmentation Ablations. We tried three types of face-
level prediction network using our self-supervised face em-
beddings to determine which was best. The first two try
to directly classify faces from the embedding, one using a
linear support vector machine (SVM) and the other using a
multi-layer perceptron. These test linear and non-linear de-
cision boundaries based on face-codes alone. The third is
the message passing scheme described in Section 4, which
tests if neighborhood context is necessary.

To evaluate how well each method worked across labeled
dataset sizes, we trained each model repeatedly on all sup-
ported tasks at a variety of training set sizes using a scheme
similar to our baseline comparisons. Table 2 records the av-
erage face segmentation accuracy across dataset sizes for
both segmentation tasks. In most cases a non-linear de-
cision boundary is more accurate than a linear one, and
neighborhood information improves accuracy leading us to
choose the message passing network as our method. For
the Fusion 360 Segmentation task the simpler architectures
performed very slightly better than the message passing net-
work at low training set sizes, and for MFCAD SVM per-
formed significantly better. We hypothesize that this is due
to a combination of SVMs known ability to generalize well
with few examples.

Classification Ablations. We also tested adding message
passing layers prior to pooling for the classification net-
work. As Table 3 shows, this additional complexity did not
yield any improvement.

F. Effect of Rasterization Accuracy

Segmentation accuracy is correlated with the accuracy
of our model’s rasterization. Figure 6 shows how the like-
lihood of correctly classifying a face decreases with the re-
construction accuracy of that face. While this figure aggre-
gates data from all training set sizes, the trend is the same
across each of them, merely with different slopes. This sug-
gests that downstream task performance could be substan-
tially improved by improving the rasterization learning ac-
curacy, allowing us to learn better representations of com-
plex faces.

−12 −11 −10 −9 −8 −7 −6 −5 −4 −3 −2 −1 0
Rasterization log MSE (binned)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Se
gm

en
ta

tio
n

Ac
cu

ra
cy

Segmentation vs Rasterization Accuracy

Figure 6. Segmentation accuracy compared to rasterization accu-
racy on the Fusion 360 segmentation task. The X-axis is the log of
the per-face MSE of our rasterization, binned into 10 groups; the
Y-axis is the fraction of faces segmented accurately within each
bin. Data is aggregated across all segmentation training set sizes
and seeds (the trend is similar across all sizes, with lower accura-
cies at lower training set sizes).

Figure 7. Shape matching with differentiable rasterization. The
input cube (left) was optimized using SGD over its B-Rep shape
parameters (right) to match a target point cloud (red).

G. Additional Examples

Here we present additional results on randomly sampled
parts in rasterization and segmentation. Figure 8 shows re-
construction results on random parts from the Fusion 360
Gallery Segmentation test set. Figure 9 shows random part
comparisons against baselines for construction based seg-
mentation on the same dataset. Figure 10 shows additional
manufacturing based segmentation results on random parts
sampled from the MFCAD test set.

H. Gradient Based Optimization

Operating our self-supervision network as a rasterizer
creates, in effect, a differentiable CAD renderer, we can use
it for gradient-based optimization of B-Rep shape param-
eters. To demonstrate the potential of such an application,
we prototyped a shape matching application, where an input
B-Rep is optimized via stochastic gradient descent to match
a target point cloud. Figure 7 shows the results of using this

Task / Model Training Set Size

Fusion 360 Segmentation Accuracy@: 10 100 1000 10000 20000 23266

Self-Supervision + SVM 0.66 0.79 0.85 0.87 0.87 0.87
Self-Supervision + MLP 0.65 0.80 0.90 0.94 0.94 0.94
Self-Supervision + MP 0.65 0.79 0.91 0.95 0.96 0.96

MFCAD Accuracy@: 10 100 1000 10000 13940 --

Self-Supervision + SVM 0.40 0.51 0.56 0.57 0.57
Self-Supervision + MLP 0.36 0.60 0.86 0.93 0.93
Self-Supervision + MP 0.35 0.66 0.96 0.99 0.99

Table 2. Segmentation ablations. Reported face classification accuracy shows the mean of 10 runs at each dataset size with the train set
subset at different random seeds (each model sees the same 10 random subsets). Models were selected by best validation loss on a random
20% validation split, except for the SVM models. Bold indicates the best accuracy at each train size for each task.

Task / Model Training Set Fraction

FabWave Accuracy@: 1% 5% 10% 20% 50% 75% 100%

Self-Supervision + Pooling .895 .989 .994 .997 1.00 1.00 1.00
Self-Supervision + MP + Pooling 0.899 0.989 0.994 0.997 1.00 1.00 1.00

Table 3. Classification ablations. Reported accuracy shows mean of 10 runs, similar to Table 2. Adding message passing prior to pooling
does not confer an advantage, so we do not use it in our reported results.

optimization to angle the face of a cube. We find that this
technique struggles on more complex shapes, which may
overcome by improved rasterization performance.

References
[1] Open CASCADE Technology OCCT. http://www.

opencascade.com/. Accessed: 2022-05-19. 2
[2] Matthias Fey and Jan E. Lenssen. Fast graph representation

learning with PyTorch Geometric. In ICLR Workshop on Rep-
resentation Learning on Graphs and Manifolds, 2019. 1

[3] Benjamin Jones, Dalton Hildreth, Duowen Chen, Ilya Baran,
Vladimir G. Kim, and Adriana Schulz. Automate: A dataset
and learning approach for automatic mating of cad assemblies.
ACM Transactions on Graphics, 40(6), dec 2021. 1

[4] Joseph G. Lambourne, Karl D. D. Willis, Pradeep Ku-
mar Jayaraman, Aditya Sanghi, Peter Meltzer, and Hooman
Shayani. BRepNet: A topological message passing system
for solid models. arXiv:2104.00706 [cs], Apr. 2021. arXiv:
2104.00706. 1

[5] Guohao Li, Matthias Müller, Ali Thabet, and Bernard
Ghanem. Deepgcns: Can gcns go as deep as cnns? In The
IEEE International Conference on Computer Vision (ICCV),
2019. 2

[6] Jeong Joon Park, Peter Florence, Julian Straub, Richard A.
Newcombe, and Steven Lovegrove. Deepsdf: Learning con-
tinuous signed distance functions for shape representation.
CVPR, 2019. 2

[7] Jiaxuan You, Rex Ying, and Jure Leskovec. Design space for
graph neural networks. In Proceedings of the 34th Interna-
tional Conference on Neural Information Processing Systems,

NIPS’20, Red Hook, NY, USA, 2020. Curran Associates Inc.
1

http://www.opencascade.com/
http://www.opencascade.com/

Figure 8. Additional reconstruction examples sampled randomly from the Fusion 360 Gallery Segmentation test set.

Ground Truth Ours UV-Net BRepNet SB-GCN Ground Truth Ours UV-Net BRepNet SB-GCN

Figure 9. Additional construction based segmentation examples sampled randomly from the Fusion 360 Gallery Segmentation test set.

Ground Truth Ours UV-Net BRepNet SB-GCN Ground Truth Ours UV-Net BRepNet SB-GCN

Figure 10. Additional manufacturing based segmentation examples sampled randomly from the MFCAD test set.

	. Representation Learning Architecture
	. Few-Shot Learning Architectures
	. Biased SDF Sampling
	. Unsupervised Part Retrieval
	. Ablations
	. Effect of Rasterization Accuracy
	. Additional Examples
	. Gradient Based Optimization

