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Framework Architectures

For the CBP branch, we employ one Transformer pyra-
mid encoder as the backbone architecture to model multi-
scale information. It contains alternating blocks of Multi-
head Self-attention and MLPs. Layer Norm is used before
each block, and residual connection is used after each block.
Then, to generate frame-level action probabilities Pcb, we
utilize one lightweight convolutional decoder, which con-
tains 3-layer 1D convolutional networks.

For the VLP branch, both the CLIP image and text en-
coders are adopted from ViT-B/16. For the textual stream,
we prepend and append 16 learnable prompt vectors to the
tokenized action category names. For the visual stream, we
attach two temporal Transformer layers to the frame-level
features Fvis. And each Transformer layer is composed of
Multi-head Self-attention, Layer Norm, and MLPs. During
training, we freeze both encoders, and only optimize these
prompt vectors and temporal Transformer layers.

Implementation Details

Training. Our framework is implemented by PyTorch, all
experiments are done on one 24G GeForce RTX 3090 GPU.
On both datasets, the model is optimized with Adam using
a learning rate of 10−4, and a batch size of 64 videos.

We first warm up the CBP branch for 10 epochs using
only action category supervision, to initialize reliable back-
ground frames. Then, we alternately train the B/F step: in
B step, we optimize the VLP branch for 20 epochs, to sup-
press false positives; while in F step, we re-train the CBP
branch for 20 epochs, to suppress false negatives.

For the CBP branch, we use a fixed FPS of 25 on both
datasets, following the literature [5, 6, 9, 10, 14]. To handle
the large variety in video durations, we randomly sample
T consecutive snippets for each video. T is set to 1000 on

THUMOS14, and 400 on ActivityNet1.2. We use the TV-
L1 algorithm [13] to extract optical flow from RGB data.

For the VLP branch, we set T to 1000 on THUMOS14,
400 on ActivityNet1.2. For spatial resolution, we perform
center cropping to give each video frame a size of 224×224,
following a convention [2, 3]. Prompt vectors and temporal
Transformer have the same dimension, and are both initial-
ized with N (0, 0.01). The temperature τ is set to 0.07.

Inference. During testing, we adopt the results from the
CBP branch for post-processing to ensure efficiency, as no
VLP branch can save computing costs. And we believe an
ensemble of two branches will further boost performance.
Given one video, we first obtain video-level category proba-
bilities and frame-level localization scores. For action clas-
sification, we select the categories with probabilities greater
than θcls. For action localization, we threshold localization
scores with θloc, concatenate consecutive snippets as action
proposals, and eliminate redundant proposals with soft non-
maximum suppression (NMS). Each proposal is scored by
the localization maximum within the proposal interval.

Limitations and Future Work

For the CBP branch, we freeze the I3D architecture pre-
trained on Kinetics [1], to extract RGB and Flow features,
following the consensus [4, 7, 8, 12, 15]. Such one frozen
extractor could save computing resources, but may limit the
TAL performance ceiling somewhat.

For the VLP branch, we leverage the CLIP [11], which is
pre-trained with 400M image-text pairs collected from web,
thus could potentially bias towards web data.

As the future work, we expect more computing resources
available, to further optimize our distillation-collaboration
framework into the end-to-end training setup, also render-
ing the asynchronous online training.
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