Supplemental Material

A. About the Design Choice

In terms of integrating LIIF [2] into RAFT [9], designing
the output O as motion fields may seem more natural. In-
stead of directly estimating motion vector, however, we de-
fine fy as the upsampling layer to produce the upsampling
mask of convex combination. This has several advantages
over directly producing optical flow with it.

If we define O as motion vector and produce high-
resolution optical flow, e.g. H x W x 2, it requires H x W
times inference of the MLP (fy), which is computationally
intractable, especially on embedded devices. In addition,
RAFT generates Af; by every GRU iteration and accumu-
lates it, which means fy should be used by every iteration to
estimate it. Instead, by defining O as the upsampling mask,
fo runs only after the final GRU iteration and helps avoid
computational cost proportional to the number of iterations,
which could be incurred otherwise.

B. Implementation and Network Details
B.1. Neural Implicit Flow Upsampler

For the neural implicit flow upsampler, as mentioned in
Sec.3.1, we apply positional encoding function [4, 10] ¢ to
the relative coordinates.

Y(x) = (sin (w1), cos (wrz), - -,
.)]
sin (wpx), cos (wrx)),

where the frequency parameters are initialized as w; =
2¢!,1 € {1,2,..., L} and optimized during the training. L
is set to 24 for our experiments. We also apply cell decod-
ing [2] to leave a slight room for the output to vary with
the target resolution. We do not adopt feature unfolding and
local ensemble [2] for AnyFlow since they incur significant
computational costs. Table 1 describes the network archi-
tecture of the implicit upsampler, fj.

B.2. Multi-scale Feature Warping

For multi-scale feature warping, we employ three 1 x 1
convolution layers and two PixelShuffle layers, as detailed
in Eqns. 3-5 of the manuscript. Table 2 outlines the ar-
chitectures of each 1 x 1 convolution layer, as well as the
subsequent PixelShuffle layers [8].

The convolution layer in Table 2 (a) processes the input

pair of half-scale feature maps, [F11 / 2, F21 / 2], concatenated
along the channel dimension. The layer in Table 2 (b) pro-
cesses the input pair of quarter-scale feature maps. Lastly,
the final layer in Table 2 (c) processes the outputs from the
previous layers, FY/? and FV/Y,

Neural Implicit Flow Upsampler

layers | channel out | channel in
Linear, ReLU 256 180
Linear, ReLU 256 256
Linear, ReLU 256 256

Linear 144 256

Table 1. Network details of the neural implicit flow upsampler.

layers channel out | channel in
1x1 Conv 16 64 x 2
PixelShuffle (scale=1/4) 256 16
(@)
layers channel out | channel in
1x1 Conv 32 96 x 2
PixelShuffle (scale=1/2) 128 32
(b)
layers | channel out | channel in
IxIConv | 128 | 374

(©

Table 2. Network details of the multi-scale feature warping.

B.3. Dynamic Lookup with Region Encoding

We follow the general framework of RAFT [9] and each
common module has the same architecture as that in RAFT.
To enable dynamic lookup, we set the output channel to 3,
where the first two channels are for the residual flow and the
last channel is for the residual radius. As the update block
in RAFT takes as input the accumulated flow to produce the
residual flow for the next iteration, we also feed the accu-
mulated radius to the update block by concatenating it with
the flow.

For the region encoding, we use 2-layer MLP for the en-
coding function g4 with an intermediate dimension of 12:
ge =[Linear(12, 10), ReLU, Linear(1, 12)]. We adopt re-
spective encoding function for each correlation volume in
multiple scales.

C. Analysis of Neural Implicit Flow Upsampler

In this section, we perform further ablation studies about
the neural implicit flow upsampler. The usage of it enables
us to adopt several strategies for AnyFlow. Since it can
generate optical flow in higher-resolution than that of input
images, we perform multi-scale training. As mentioned in
Sec. 3.4, we randomly downsample inputs, generate output
in the target size, and then compute the loss function. Also,
it can be used to improve the performance of the multi-scale
warping method, which was verified in the manuscript. We
also compare the effects of hyperparameters, n, and the ef-
fect of positional encoding. Note that we adopt a dynamic
lookup strategy for all the results in this section.

In the top section of Table 3, we analyze the effect of
multi-scale training. As shown in the table, the performance
is severely degraded without multi-scale training. Since the
implicit upsampler takes as inputs 2D position information,
i.e. relative position and its encoding, it needs to learn the
mapping from the position inputs to the outputs. There-
fore, the network should encounter diverse ranges of po-
sition information during training and multi-scale training
is required to satisfy this condition. Without it, the net-
work only takes fixed positional inputs during training and
lacks the ability to generalize, which degrades the overall
performance. In addition, image downsampling decreases
the motion ranges and trains the network to generalize well
on diverse motion ranges. Therefore, multi-scale training is
beneficial for designing the robust network which can gen-
eralize well on various scenarios.

In the middle section, we compare the results of different
n. In this experiment, we adopt the bilinear interpolation for
the multi-scale feature warping (MS bilin.). As mentioned
in Sec. 3.1, each output O(z,) represents the n-times up-
sampling weights for each query point x,. That is, as n
decreases, the number of samples that is required to pro-
duce the output in the target resolution quadratically grows.
As shown in the table, we empirically found that AnyFlow
shows the best results when 7 is set to 4. When comparing
n = 8 with n = 4, smaller n increases the sampling gran-
ularity within each pixel and enables the network to learn
the diverse position inputs during the training. However,
there exists an accuracy-efficiency trade-off when deciding
the value of n. As mentioned in Sec. A, the implicit upsam-
pler is only used at the final iteration and it does not have a
critical effect on final efficiency during inference. However,
it does for training, where the upsampler should be used at
every iteration to compute the loss functions. Therefore, a

smaller n affects the training efficiency, increasing the train-
ing time and memory.

In the last section, we evaluate the effect of the posi-
tional encoding. As the results show, AnyFlow benefits
from the usage of positional encoding. Even though opti-
cal flow generally consists of locally smooth motion fields,
learning high-frequency details through the position encod-
ing is useful to learn clear and accurate boundaries. Fur-
thermore, feeding the high-dimensional inputs by encoding
the positions helps the network model the complex mapping
from the position information to the outputs, instead of only
feeding the 2D coordinates.

KITTI
Clean Final F1-all

w/o m.s. training 1.31 2.57 4.39 14.10
w/ m.s. training ~ 1.17 2.58 3.95 13.01

MS bilin.,n =8 122 2.60 4.17 13.44
MS bilin.,n =4 120 2.58 4.01 13.12
MS bilin.,n =2 125 271 4.22 13.29

w/o p.e. 121 262 4.21 13.27
w/ p.e. 1.17 2.58 3.95 13.01

Method Sintel

Fl-epe

Table 3. Ablation experiments for the neural implicit flow up-
sampler. m.s. denotes multi-scale training strategy, and p.e. de-
notes the positional encoding. The training is performed on Fly-
ingChairs [3] and FlyingThings [6].

D. Analysis of Dynamic Lookup

In this section, we analyze how the network predicts the
radius depending on the motion ranges and input images.
Our desired behavior is that the network increases the radius
to capture large displacements when the input pair contains
large motions. On the other hand, the network should re-
duce the radius to focus on small areas and produce precise
estimations when the input pair mostly contains small mo-
tions.

In Fig. 1, we describe maximum, average and mini-
mum values of norm of ground-truth flow in each image,
and visualize the changes of the predicted radius by itera-
tions. MAX denotes the maximum value of predicted radius
across all pixels, and AVG denotes the averaged one over all
pixels. We set the initial radius, r¢, as 4px for all examples.

Example (a) contains motions within a range between
0.92 and 8.42, and example (b) contains motions within a
range between 0.11 and 0.30. Both cases contain mostly
small motions. When the input images contain small mo-
tions, as shown in the right columns, the predicted radius
decreases as the number of iterations grows. As the ini-
tial radius is set to 4, the receptive field of each grid for

Predicted radius per iteration

5
4
» 3
=
2
22
1
0
01 23 456 78 9101112
Iterations
——MAX AVG
Predicted radius per iteration
45
4
35
3
225
g 2
1.5
1
0.5
0
0123456 789101112
Iterations
~MAX —+-AVG
(b)
Predicted radius per iteration
9
8
7
6
EE
24
3
2
1
0
0123 45 6 7 8 9101112
Iterations
——MAX —-AVG
Predicted radius per iteration
10
8
2 6
2
<
~ 4
2
0
0123 456 728 9101112
Iterations
——MAX AVG

(d

Figure 1. Examples on the Sintel [1] dataset. We describe motion ranges in the ground-truth of each example and the changes of radius
predicted by AnyFlow in each iteration using the dynamic lookup strategy. The training is performed on FlyingChairs [3] and FlyingTh-

ings [6].

Average Radius

Maximum Radius
8
7
6
5 N
4
3
2

0123 456 7 8 9101112

1 i .

0123 456789101112
100% 80% 60% 100% 80% 60%

Figure 2. Comparisons of the predicted radius in each iteration as
the image resolution decreases.

the correlation lookup becomes (2 x 4 x 8)? area because
the correlation sampling is performed on 1/8-sized feature
maps. Therefore, the initial lookup already covers every
motion range and the network tries to reduce the radius to
concentrate more on real correspondence from the second
iteration. In addition, example (a) contains relatively larger
motions than those in (b), and the average radius is pre-
dicted as larger for (a) than that in (b).

On the other hand, examples (c) and (d) contain large
displacements, e.g. larger than 100px, and the network pre-
dicts much larger radius for these inputs. As the initial ra-
dius is set as 4, the receptive fields for the correlation lookup
do not cover all the regions that contain expected correspon-
dence. Therefore, the network tries to increase the radius to
find the correspondence.

Fig. 2 shows the maximum and average radius, as the
network takes as input the downsampled images. We feed
a single pair of images downsampled by different scale fac-
tors and visualize the radius changes. As shown in the fig-
ure, the network tends to predict smaller radius as the down-
sample factor increases. This demonstrates the ability of
AnyFlow to generalize well on diverse resolutions and per-
form robust estimation.

E. Runtime Analysis

In Fig. 3, we report end-to-end point error (EPE) on the
Sintel clean as a function of runtime. The runtimes are
estimated for inferencing one 1024 x 436 image using an
NVIDIA V100 GPU. As AnyFlow is an iterative approach,
naive comparisons of runtimes under a fixed number of it-
erations do not provide meaningful information. Therefore,
we analyze how long AnyFlow takes to reach the target ac-
curacy and how many iterations it requires. We compare it

with RAFT [9] and GMA [5], and report EPE and runtimes
for a total of 32 iterations.

Even though AnyFlow with the region encoding (de-
noted as R.E.) takes more time for running a single iteration
than that of RAFT, it only requires 5 iterations to achieve a
lower EPE than the best EPE of RAFT. After 74" iteration, it
achieves better accuracy than the best accuracy of GMA [5].
After the 15" iteration, AnyFlow (R.E.) achieves 1.10 EPE
in 0.183s. Since the RAFT uses 32 iterations to achieve the
best accuracy on Sintel, which takes 0.195s for the infer-
ence. AnyFlow (R.E.) achieves much better results (1.10 vs
1.47) as well as enables faster inference.

We also report the results of AnyFlow (dynamic). Since
the region encoding takes more time to encode regional cor-
relation, AnyFlow (dynamic) shows better efficiency. It
takes less time for 32 iterations than GMA [5] and achieves
better results at the same time. Only after the 9t" jteration,
it achieves 1.27 EPE in 0.086s and outperforms GMA.

F. Qualitative Results on KITTI

We visualize the optical flow predictions of AnyFlow,
RAFT [9] and GMA [5] on KITTI test images in Fig. 4 and
Fig. 5. As shown in Fig. 4, AnyFlow shows more accurate
shapes and boundaries of objects with preserving details.
Fig. 5 shows the examples that contain small moving ob-
jects and small motions. Since the person in the scenes is
far from the camera, it is difficult for the other methods to
detect it. As AnyFlow benefits from high-resolution feature
maps thanks to the multi-scale warping strategy, it can more
precisely estimate small objects in the real-world dataset.
These results further demonstrate the ability of AnyFlow
that can generalize well on real world-scenes, KITTL.

In Table 4, we also compare our results with DIP [1 1]. In
Table 1 in the manuscript, we only compare F1-all, which
includes all regions for computing the metric. Even though
DIP shows better F1-all than ours, we achieve lower F1-fg,
further demonstrating that AnyFlow performs precise esti-
mation of especially the foreground objects.

G. Online Benchmarks

In Fig. 6 and Fig. 7, we demonstrate the results on the
test set of Sintel [1] and KITTI [7]. The results are the same
as the ones we present in Table 1 in the manuscript.

EPE / Runtime Comparisons

39 o AnyFlow (R.E.)

37 AnyFlow (dynamic)
3.6 o RAFT

o GMA

2.8 : AnyFlow (R.E.)
2.7 : EPE: 1.40

2.6 *h 5t jteration .
0.076s AnyFlow (dynamic)

24 : EPE: 1.27
2.3 g /7\ 9t jteration
22 ' / 0.086s

AnyFlow (R.E.)
EPE: 1.27
7% iteration
o 0.098s AnyFlow (R.E.)
o / EPE: 1.10
15% jteration
0.183s

End-to-end Point Error

%o
@

%o o
°
J 0000006 000000000000

-0
@0 00000 @000 0000
e-.

Q.

o}

90
o
G Q@@ e @ @ Qs Qe Qv Qs @ @ @ @ @ @ @ @ @ @@

— et et b e
—_—— D W A LN O N

0 0.05 0.1 0.15 0.2 0.25 03 035 0.4
Runtime (s)

Figure 3. End-to-end point error (EPE) and runtime comparisons with RAFT [9] and GMA [5]. We report the data points for a total of 32
iterations.

AnyFlow

GMA RAFT

Figure 4. Qualitative results of AnyFlow, RAFT [9] and GMA [5] on KITTT test images. AnyFlow shows clearer and more accurate shape
of objects with detail preservation.

|

AnyFlow

RAFT

GMA

.
I E RAFT
E GMA

Figure 5. Qualitative results of AnyFlow, RAFT [9] and GMA [5] on KITTI test images. AnyFlow detects small objects and small motions
well, where the other methods fail to detect.

Training C+T+S+K+H
Method KITTI (test)
Fl1-fg Fl-all
DIP [11] 5.96 4.21
AnyFlow (dynamic) 5.76 4.41

Table 4. Comparisons of Fl-fg and F1-all with DIP [11] on the
KITTT test images.

and Rankings

appear here after users upload them and approve them for

Visualize Results

Visualize Results

Visualize Results

Visualize Results

Visualize Results

Visualize Results

Visualize Results

Visualize Results

Visualize Results

Visualize Results

Visualize Results

Visualize Results

Visualize Results

Visualize Results

Visualize Results

Final = Clean
EPEall EPE matched EPE unmatched do-10 d10-60 d60-140 s0-10 $10-40 sd0+
GroundTruth (1] 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
GMFlow+ 2! 1.028 0.335 6.680 0.868 0.264 0.183 0.227 0.689 5.826
GMFlow_RVC I 1.055 0.420 6.227 1.084 0.326 0.227 0.302 0.754 5513
FlowFormer++ (] 1.073 0.390 6.635 1.099 0.296 0.179 0.252 0.79 5.810
SplatFlow 5] 1.119 0.511 6.061 1.410 0.394 0.247 0.272 0.868 5915
MatchFlow_GMA (! 1.164 0.431 7.130 1.259 0.311 0.197 0.265 0.845 6.387
RAFT-it+_RVC [7] 1.187 0.441 7.260 1.301 0.338 0.181 0.242 0.834 6.723
FlowFormer ! 1.196 0.406 7.627 1437 0.310 0.192 0.253 0.800 6.826
|AnyFIow+GMA Bl AnyFlow+GMA 1.209 0.416 7.681 1.200 0.330 0.164 0.208 0.739 7.315 |
|AnyFIow-D 1 AnyFlow (dynamic) 1.228 0.404 7.952 1.196 0.310 0.156 0.224 0.751 7.370 |
MS_RAFT+_RVC [11] 1.232 0.400 8.021 1.101 0.353 0.142 0.159 0.631 8.020
SKil+ 12 1.252 0.511 7.282 1.485 0.389 0.213 0.279 0.927 6.856
|AnyFIow-R (13 AnyFlow (R.E.) 1262 0.419 8.141 1.237 0.324 0.163 0.219 0.790 7.589 |
SKII 14 1.302 0.532 7.571 1.494 0.422 0.225 0.278 0.931 7.269
SKFlow [19] 1.312 0.567 7.379 1510 0.453 0.231 0.300 0.969 7.159
(a) Results on Sintel clean dataset.
caev 1 2.430 1.149 12.881 2.821 1.014 0.525 0.500 1.657 13.873
GMA-FS (5] 2.441 1.203 12.551 2777 0.961 0.594 0.587 1.646 13576
AnyFlow-D " AnyFlow (dynamic) 2443 1121 13210 2.764 0.929 0.516 0.505 1.568 14.167
AnyFlow+GMA 1 AnyFlow + GMA 2456 1.116 13.372 2.768 0.937 0.506 0.539 1.532 14.198
ErrorMatch-GMA [18] 2.461 1.228 12519 2.799 1.047 0.642 0.541 1.701 13.821
AGFlow (9] 2.469 1.221 12.643 2.892 0.991 0.698 0.560 1.692 13.816
GMA 201 2.470 1.241 12501 2.863 1.057 0.653 0.566 1.817 13.492
RAFT-0CTC [27] 2,574 1.243 13.435 2.880 1.045 0.667 0.578 1.701 14.594
MFCFlow 2 2.579 1.326 12.805 3.018 1.113 0.662 0.587 1.678 14.647
SKFlow_RAFT 23] 2.607 1.288 13.352 2977 1.018 0.654 0.642 1.769 14.379
AnyFlow-R 4] AnyFlow (R.E) 2629 1.215 14.148 2.768 0.953 0.678 0.520 1.637 15.487 |
RAFT-CF [25] 2.645 1.218 14.289 2775 1.051 0.639 0.547 1.524 15.775
GMFlowNet %°! 2.648 1.271 13.882 2818 1.050 0.776 0.699 1.784 14.417

(b) Results on Sintel final dataset.

Figure 6. Screenshots for Sintel results on the online benchmarks.

Visualize Results

Visualize Results

Visualize Results

Visualize Results

Visualize Results

Visualize Results

Visualize Results

Visualize Results

Visualize Results

Visualize Results

Visualize Results

Visualize Results

Visualize Results

Evaluation ground truth Evaluation area | All pixels v

Method Setting : Code Fl-bg Fl-fg Fl-all Density Runtime Environment I Compare I
1 CamLiFlows++ ? 2.07%: 677% 2.85% 100.00% 13 GPU ® 2.5 Ghz (Python + C/C=+)]
2 CamLiFlow Dcode 2.31% | 7.04% 3.40% 100.00% | 125 | GPU®2.5Ghz (Python = C/Co+) 0

H. Tiu, T Lu, Y. Xu, J. Liu, W. Li and L. Chen: WWWMUMMMMJW CVPR 2022.

3 M-FUSE .. §cd 2.66% : 7.47% 3.46% 100.00% 1.3s GPU 0

L Mehl A. Jahedi,). Schmalfuss and A, Bruhn » Multi-frame Fusi n[r Scene Flow Estimation. Proc. wlnter ConferenceonApphcahons of Computer Vision (WACV) 2023,

4 RigidMask+ISF icode 263% [7.85% 3.50% 10000% 33s GPU @ 2.5 Ghz (Python)]

G. Yang and D. Ramanan: Learning to Segment Rigid M.ouons from Two Frames CVPR 2021

TPCV+RAFT3D : i3] L248% 10 19% 3.76% 100.00% | 0.2s 1 core ® 2.5 Ghz (C/C++) O
RAFT-it+ RVC ! i f 3.62% 533% 3.90% 100.00% O.14s 1 core @ 2.5 Ghz (Python) m]
7 RAFT-OCTC H 1 3.72% : 5.39% 4.00% 100.00% 0.2s GPU @ 2.5 Ghz (Python) (]

J. Jeong, J. Lin, F. Porikli and N. Kwak: \mngﬁg_s_s_t:Myﬁz Qm cal Fgw Estil mnlgn Qualcomi m.e Research : CVPR 2022,

3 SF25E3 icode 3.47% i 8.79% 411% 10000% 2.7s GPU @ =3.5 Ghz (Python) O

L. Sommer P. Schriéppel and T. Brox: SFZSE} Clustering cene Flow into SE 3] -Motions. Ma Proposal and Seleclion DAGM German (onfevence on Pattern Recognition 2022.

9 RAFT-CF-PL3 1 3.80% 5.65% 4.11% 100.00% 0.05s | GPU @ 2.5 Ghz (Pythen) i 0

Fa lhang, P Ji, N. Bansal C. Cai, Q. Yan, X Xu and Y.)Cu CLIp- Fan (nntrastlve Learning hv semi-supervised Iterative Pseudo Iabeli_rm, for Oplical Flow Estimation. 2022.
10 | MS RAFT+ corr RVC i code | 383% 571% 4.15% 100.00% | 0.65s GPU @ 2.5 Ghz (Python + C/C++) (]

A, Jahedl M. Luz, L. Mehl, M. Rivinius andA Bruhn: Htgh Resclulior\ Multi- Scale RAFT. Robust Vision Challenge 2022 arXiv preprint arXiv:2210.16900 2022.

A Jahedi L. Mehl M. lenlus and A, Bruhn Multi-Scale Eﬂ i Qszmbmlng ng@f;h‘ﬁﬂ !:g ncepts for l.gimmg Eg;@ Qm cal Flow Eﬁlmﬂlgn IEEE International Conference on Image Pﬂxesslng (ICIP) 2022.
1 MS_RAFT+ RVC | 3.89% 1 567% 419% 100.00 % 0655 | GPU @ 2.5 Ghz (Python + C/C++) 0
12 DIP icode 3.86% :5.96% 421% 100.00% 0155 | 1 core @ 2.5 Ghz (Pythen) i m]

7. Iheng N. Nie, Z. Ling, P. Xiong, J. L|u, H Wang andJ Li: D_QQEDMLE_PMQ_E_EM;MLDH_QMM Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognmon 201’2
13 | BAEI';lD 339% 8.79% 4.29% 100.00 % s GPU@Z SGhz(Pythun+Ca’C++)

Z Teed and J. Deng: RAFT-3D: Scene Flow using Rigid- Motlon Embeddi ings. arXiv preprinl arXivi2012. 00726 2020.

14 RAFT-it 411% 534% 4.31% 100.00 % 0.1s GPU @ 2.5 Ghz (Python)
15 -Flow (3.9% i 621% 433% 100.00% 0465 | 1 core @ 2.5 Ghz (Python)

6% i 567% 441% 100.00% 025
ying. Fluw, Stereo and Degth Estlmalmn

GPU (Python)
i

[177 AnyFlow 415% 1576% 4.41%] 100.00% 015 ! 1 core ® 2.5 Ghz (Python)
18 CCH-Flow | 420% {550% 442% 100.00% 025 1 core ® 2.5 Ghz (Python)
19 GMFlow+ icode 427% 5.60% 449% 100.00% 025 | GPU (Python)

H. Xu, J Ihang, J. Cai, H. Rezatofighi, F Yu D. Tao and A. Geiger: Unifying E_IQ L Stereo and Depth Estimation. amv preprint arXiv:2211.05783 2022.

Figure 7. Screenshot for KITTI results on the online benchmark.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

(11]

D. J. Butler, J. Wulff, G. B. Stanley, and M. J. Black. A
naturalistic open source movie for optical flow evaluation.
In ECCV, 2012. 3,4

Yinbo Chen, Sifei Liu, and Xiaolong Wang. Learning con-
tinuous image representation with local implicit image func-
tion. In CVPR, pages 8628-8638, 2021. 1

A. Dosovitskiy, P. Fischer, E. Ilg, P. Hiusser, C. Hazirbasg,
V. Golkov, P. v.d. Smagt, D. Cremers, and T. Brox. Flownet:
Learning optical flow with convolutional networks. In ICCV,
2015. 2,3

Hanzhe Hu, Yinbo Chen, Jiarui Xu, Shubhankar Borse,
Hong Cai, Fatih Porikli, and Xiaolong Wang. Learning im-
plicit feature alignment function for semantic segmentation.
In ECCV, 2022. 1

Shihao Jiang, Dylan Campbell, Yao Lu, Hongdong Li, and
Richard Hartley. Learning to estimate hidden motions with
global motion aggregation. In ICCV, 2021. 4, 5,6

N. Mayer, E. Ilg, P. Hdusser, P. Fischer, D. Cremers, A.
Dosovitskiy, and T. Brox. A large dataset to train convo-
lutional networks for disparity, optical flow, and scene flow
estimation. In CVPR, 2016. 2, 3

Moritz Menze and Andreas Geiger. Object scene flow for
autonomous vehicles. In CVPR, 2015. 4

Wenzhe Shi, Jose Caballero, Ferenc Huszar, Johannes Totz,
Andrew P. Aitken, Rob Bishop, Daniel Rueckert, and Zehan
Wang. Real-time single image and video super-resolution
using an efficient sub-pixel convolutional neural network. In
CVPR, 2016. 1

Zachary Teed and Jia Deng. Raft: Recurrent all-pairs field
transforms for optical flow. In ECCV, 2020. 1,4, 5, 6
Xinggian Xu, Zhangyang Wang, and Humphrey Shi. Ul-
trasr: Spatial encoding is a missing key for implicit im-
age function-based arbitrary-scale super-resolution. In arXiv
preprint arXiv:2103.12716, 2021. 1

Zihua Zheng, Ni Nie, Zhi Ling, Pengfei Xiong, Jiangyu Liu,
Hao Wang, and Jiankun Li. Dip: Deep inverse patchmatch
for high-resolution optical flow. In CVPR, 2022. 4, 6

	. About the Design Choice
	. Implementation and Network Details
	. Neural Implicit Flow Upsampler
	. Multi-scale Feature Warping
	. Dynamic Lookup with Region Encoding

	. Analysis of Neural Implicit Flow Upsampler
	. Analysis of Dynamic Lookup
	. Runtime Analysis
	. Qualitative Results on KITTI
	. Online Benchmarks

