
Supplemental Material

A. About the Design Choice
In terms of integrating LIIF [2] into RAFT [9], designing

the output O as motion fields may seem more natural. In-
stead of directly estimating motion vector, however, we de-
fine fθ as the upsampling layer to produce the upsampling
mask of convex combination. This has several advantages
over directly producing optical flow with it.

If we define O as motion vector and produce high-
resolution optical flow, e.g. H ×W × 2, it requires H ×W
times inference of the MLP (fθ), which is computationally
intractable, especially on embedded devices. In addition,
RAFT generates ∆fi by every GRU iteration and accumu-
lates it, which means fθ should be used by every iteration to
estimate it. Instead, by defining O as the upsampling mask,
fθ runs only after the final GRU iteration and helps avoid
computational cost proportional to the number of iterations,
which could be incurred otherwise.

B. Implementation and Network Details
B.1. Neural Implicit Flow Upsampler

For the neural implicit flow upsampler, as mentioned in
Sec.3.1, we apply positional encoding function [4, 10] ψ to
the relative coordinates.

ψ(x) = (sin (ω1x), cos (ω1x), · · · ,
sin (ωLx), cos (ωLx)),

(1)

where the frequency parameters are initialized as ωl =
2el, l ∈ {1, 2, ..., L} and optimized during the training. L
is set to 24 for our experiments. We also apply cell decod-
ing [2] to leave a slight room for the output to vary with
the target resolution. We do not adopt feature unfolding and
local ensemble [2] for AnyFlow since they incur significant
computational costs. Table 1 describes the network archi-
tecture of the implicit upsampler, fθ.

B.2. Multi-scale Feature Warping

For multi-scale feature warping, we employ three 1 × 1
convolution layers and two PixelShuffle layers, as detailed
in Eqns. 3-5 of the manuscript. Table 2 outlines the ar-
chitectures of each 1 × 1 convolution layer, as well as the
subsequent PixelShuffle layers [8].

The convolution layer in Table 2 (a) processes the input
pair of half-scale feature maps, [F 1/2

1 , F
1/2
2 ], concatenated

along the channel dimension. The layer in Table 2 (b) pro-
cesses the input pair of quarter-scale feature maps. Lastly,
the final layer in Table 2 (c) processes the outputs from the
previous layers, F 1/2′ and F 1/4′.

Neural Implicit Flow Upsampler
layers channel out channel in

Linear, ReLU 256 180
Linear, ReLU 256 256
Linear, ReLU 256 256

Linear 144 256

Table 1. Network details of the neural implicit flow upsampler.

layers channel out channel in
1x1 Conv 16 64× 2

PixelShuffle (scale=1/4) 256 16
(a)

layers channel out channel in
1x1 Conv 32 96× 2

PixelShuffle (scale=1/2) 128 32
(b)

layers channel out channel in
1x1 Conv 128 374

(c)

Table 2. Network details of the multi-scale feature warping.

B.3. Dynamic Lookup with Region Encoding

We follow the general framework of RAFT [9] and each
common module has the same architecture as that in RAFT.
To enable dynamic lookup, we set the output channel to 3,
where the first two channels are for the residual flow and the
last channel is for the residual radius. As the update block
in RAFT takes as input the accumulated flow to produce the
residual flow for the next iteration, we also feed the accu-
mulated radius to the update block by concatenating it with
the flow.
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For the region encoding, we use 2-layer MLP for the en-
coding function gϕ with an intermediate dimension of 12:
gϕ =[Linear(12, 10), ReLU, Linear(1, 12)]. We adopt re-
spective encoding function for each correlation volume in
multiple scales.

C. Analysis of Neural Implicit Flow Upsampler
In this section, we perform further ablation studies about

the neural implicit flow upsampler. The usage of it enables
us to adopt several strategies for AnyFlow. Since it can
generate optical flow in higher-resolution than that of input
images, we perform multi-scale training. As mentioned in
Sec. 3.4, we randomly downsample inputs, generate output
in the target size, and then compute the loss function. Also,
it can be used to improve the performance of the multi-scale
warping method, which was verified in the manuscript. We
also compare the effects of hyperparameters, n, and the ef-
fect of positional encoding. Note that we adopt a dynamic
lookup strategy for all the results in this section.

In the top section of Table 3, we analyze the effect of
multi-scale training. As shown in the table, the performance
is severely degraded without multi-scale training. Since the
implicit upsampler takes as inputs 2D position information,
i.e. relative position and its encoding, it needs to learn the
mapping from the position inputs to the outputs. There-
fore, the network should encounter diverse ranges of po-
sition information during training and multi-scale training
is required to satisfy this condition. Without it, the net-
work only takes fixed positional inputs during training and
lacks the ability to generalize, which degrades the overall
performance. In addition, image downsampling decreases
the motion ranges and trains the network to generalize well
on diverse motion ranges. Therefore, multi-scale training is
beneficial for designing the robust network which can gen-
eralize well on various scenarios.

In the middle section, we compare the results of different
n. In this experiment, we adopt the bilinear interpolation for
the multi-scale feature warping (MS bilin.). As mentioned
in Sec. 3.1, each output O(xq) represents the n-times up-
sampling weights for each query point xq . That is, as n
decreases, the number of samples that is required to pro-
duce the output in the target resolution quadratically grows.
As shown in the table, we empirically found that AnyFlow
shows the best results when n is set to 4. When comparing
n = 8 with n = 4, smaller n increases the sampling gran-
ularity within each pixel and enables the network to learn
the diverse position inputs during the training. However,
there exists an accuracy-efficiency trade-off when deciding
the value of n. As mentioned in Sec. A, the implicit upsam-
pler is only used at the final iteration and it does not have a
critical effect on final efficiency during inference. However,
it does for training, where the upsampler should be used at
every iteration to compute the loss functions. Therefore, a

smaller n affects the training efficiency, increasing the train-
ing time and memory.

In the last section, we evaluate the effect of the posi-
tional encoding. As the results show, AnyFlow benefits
from the usage of positional encoding. Even though opti-
cal flow generally consists of locally smooth motion fields,
learning high-frequency details through the position encod-
ing is useful to learn clear and accurate boundaries. Fur-
thermore, feeding the high-dimensional inputs by encoding
the positions helps the network model the complex mapping
from the position information to the outputs, instead of only
feeding the 2D coordinates.

Method Sintel KITTI

Clean Final F1-epe F1-all

w/o m.s. training 1.31 2.57 4.39 14.10
w/ m.s. training 1.17 2.58 3.95 13.01

MS bilin., n = 8 1.22 2.60 4.17 13.44
MS bilin., n = 4 1.20 2.58 4.01 13.12
MS bilin., n = 2 1.25 2.71 4.22 13.29

w/o p.e. 1.21 2.62 4.21 13.27
w/ p.e. 1.17 2.58 3.95 13.01

Table 3. Ablation experiments for the neural implicit flow up-
sampler. m.s. denotes multi-scale training strategy, and p.e. de-
notes the positional encoding. The training is performed on Fly-
ingChairs [3] and FlyingThings [6].

D. Analysis of Dynamic Lookup
In this section, we analyze how the network predicts the

radius depending on the motion ranges and input images.
Our desired behavior is that the network increases the radius
to capture large displacements when the input pair contains
large motions. On the other hand, the network should re-
duce the radius to focus on small areas and produce precise
estimations when the input pair mostly contains small mo-
tions.

In Fig. 1, we describe maximum, average and mini-
mum values of norm of ground-truth flow in each image,
and visualize the changes of the predicted radius by itera-
tions. MAX denotes the maximum value of predicted radius
across all pixels, and AVG denotes the averaged one over all
pixels. We set the initial radius, r0, as 4px for all examples.

Example (a) contains motions within a range between
0.92 and 8.42, and example (b) contains motions within a
range between 0.11 and 0.30. Both cases contain mostly
small motions. When the input images contain small mo-
tions, as shown in the right columns, the predicted radius
decreases as the number of iterations grows. As the ini-
tial radius is set to 4, the receptive field of each grid for



(a)

(b)

(c)

(d)

Figure 1. Examples on the Sintel [1] dataset. We describe motion ranges in the ground-truth of each example and the changes of radius
predicted by AnyFlow in each iteration using the dynamic lookup strategy. The training is performed on FlyingChairs [3] and FlyingTh-
ings [6].



Figure 2. Comparisons of the predicted radius in each iteration as
the image resolution decreases.

the correlation lookup becomes (2 × 4 × 8)2 area because
the correlation sampling is performed on 1/8-sized feature
maps. Therefore, the initial lookup already covers every
motion range and the network tries to reduce the radius to
concentrate more on real correspondence from the second
iteration. In addition, example (a) contains relatively larger
motions than those in (b), and the average radius is pre-
dicted as larger for (a) than that in (b).

On the other hand, examples (c) and (d) contain large
displacements, e.g. larger than 100px, and the network pre-
dicts much larger radius for these inputs. As the initial ra-
dius is set as 4, the receptive fields for the correlation lookup
do not cover all the regions that contain expected correspon-
dence. Therefore, the network tries to increase the radius to
find the correspondence.

Fig. 2 shows the maximum and average radius, as the
network takes as input the downsampled images. We feed
a single pair of images downsampled by different scale fac-
tors and visualize the radius changes. As shown in the fig-
ure, the network tends to predict smaller radius as the down-
sample factor increases. This demonstrates the ability of
AnyFlow to generalize well on diverse resolutions and per-
form robust estimation.

E. Runtime Analysis
In Fig. 3, we report end-to-end point error (EPE) on the

Sintel clean as a function of runtime. The runtimes are
estimated for inferencing one 1024 × 436 image using an
NVIDIA V100 GPU. As AnyFlow is an iterative approach,
naive comparisons of runtimes under a fixed number of it-
erations do not provide meaningful information. Therefore,
we analyze how long AnyFlow takes to reach the target ac-
curacy and how many iterations it requires. We compare it

with RAFT [9] and GMA [5], and report EPE and runtimes
for a total of 32 iterations.

Even though AnyFlow with the region encoding (de-
noted as R.E.) takes more time for running a single iteration
than that of RAFT, it only requires 5 iterations to achieve a
lower EPE than the best EPE of RAFT. After 7th iteration, it
achieves better accuracy than the best accuracy of GMA [5].
After the 15th iteration, AnyFlow (R.E.) achieves 1.10 EPE
in 0.183s. Since the RAFT uses 32 iterations to achieve the
best accuracy on Sintel, which takes 0.195s for the infer-
ence. AnyFlow (R.E.) achieves much better results (1.10 vs
1.47) as well as enables faster inference.

We also report the results of AnyFlow (dynamic). Since
the region encoding takes more time to encode regional cor-
relation, AnyFlow (dynamic) shows better efficiency. It
takes less time for 32 iterations than GMA [5] and achieves
better results at the same time. Only after the 9th iteration,
it achieves 1.27 EPE in 0.086s and outperforms GMA.

F. Qualitative Results on KITTI
We visualize the optical flow predictions of AnyFlow,

RAFT [9] and GMA [5] on KITTI test images in Fig. 4 and
Fig. 5. As shown in Fig. 4, AnyFlow shows more accurate
shapes and boundaries of objects with preserving details.
Fig. 5 shows the examples that contain small moving ob-
jects and small motions. Since the person in the scenes is
far from the camera, it is difficult for the other methods to
detect it. As AnyFlow benefits from high-resolution feature
maps thanks to the multi-scale warping strategy, it can more
precisely estimate small objects in the real-world dataset.
These results further demonstrate the ability of AnyFlow
that can generalize well on real world-scenes, KITTI.

In Table 4, we also compare our results with DIP [11]. In
Table 1 in the manuscript, we only compare F1-all, which
includes all regions for computing the metric. Even though
DIP shows better F1-all than ours, we achieve lower F1-fg,
further demonstrating that AnyFlow performs precise esti-
mation of especially the foreground objects.

G. Online Benchmarks
In Fig. 6 and Fig. 7, we demonstrate the results on the

test set of Sintel [1] and KITTI [7]. The results are the same
as the ones we present in Table 1 in the manuscript.



Figure 3. End-to-end point error (EPE) and runtime comparisons with RAFT [9] and GMA [5]. We report the data points for a total of 32
iterations.

Figure 4. Qualitative results of AnyFlow, RAFT [9] and GMA [5] on KITTI test images. AnyFlow shows clearer and more accurate shape
of objects with detail preservation.



Figure 5. Qualitative results of AnyFlow, RAFT [9] and GMA [5] on KITTI test images. AnyFlow detects small objects and small motions
well, where the other methods fail to detect.

Training C + T + S + K + H

Method KITTI (test)

F1-fg F1-all

DIP [11] 5.96 4.21
AnyFlow (dynamic) 5.76 4.41

Table 4. Comparisons of F1-fg and F1-all with DIP [11] on the
KITTI test images.



(a) Results on Sintel clean dataset.

(b) Results on Sintel final dataset.

Figure 6. Screenshots for Sintel results on the online benchmarks.



Figure 7. Screenshot for KITTI results on the online benchmark.
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