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In this supplementary material, we provide additional re-
sults and details of our method, Selective Quad Attention
Networks (SQUAT).

1. Implementation details
1.1. Code base and GPUs.

We implemented SQUAT using Pytorch [17] and some
of the official code-base for BGNN [10]1. SQUAT was
trained for ∼8 hours on 4 RTX 3090 GPUs with batch size
12.

1.2. Edge selection module.

Following [19], we use simple MLP with 4 linear lay-
ers and Layer Normalization [1] with GeLU [7] activa-
tion. To capture the global statistics of the edge features
E = {fij}i,j , we average half of the output dimensions of
the first layer as a global feature g:

[hlij ;h
g
ij ] = l1(fij) (1)

g =
1

|E|
∑
i

∑
j

hgij , (2)

where l1 is the first layer of the edge selection module and
[·; ·] is the concatenation operation. The dimensions of the
local part hlij and the global part hgij are the same. We con-
catenate the global feature g with each of the remaining lo-
cal parts hlij and pass into the remaining 3-layer MLP to
calculate the relatedness scores sij :

sij = l2([hlij ; g]), (3)

where l2 is the remaining 3-layer MLP. In order to remove
the invalid edges, we choose top-ρ% highest relatedness
score pairs Eρ as the valid edges.

1.3. Training details.

To train SQUAT, we use Stochastic Gradient Descent
(SGD) optimizer with a learning rate 10−3. In the early

1https://github.com/SHTUPLUS/PySGG

stages of training, notice that the edge selection model is
too naive to select the valid edges to construct feasible scene
graphs and therefore causes instability during training. To
make the training stable, we pre-trained the edge selection
module for 2000 iterations with a learning rate of 10−4

freezing all other parameters, and then we trained the en-
tire SQUAT without the node detection module.

We use the keeping ratio ρ = 0.7 and ρ = 0.35 in train-
ing time and inference time, respectively, for all the SGDet
settings on the Visual Genome and the Open Images v6
datasets. Also, we use the keeping ratio ρ = 0.9 for the
SGCls and the PredCls settings on Visual Genome. Since
the background proposals do not exist in the SGCls and the
PredCls settings, there are fewer invalid edges than in the
SGDet setting; thus, we use a smaller keeping ratio. We
use three quad attention layers for the SGDet setting and
two quad attention layers for the SGCls and the PredCls
settings.

2. Additional evaluations on Visual Genome

2.1. Trade-off between recall and mean recall

Since the Visual Genome dataset2 has extremely long-
tailed distribution, there is the trade-off between recall
and mean recall [15, 21]. To evaluate various trade-offs
of the scene graph generation methods, Zhang et al. [29]
propose the F@K measure, the harmonic mean of recall
and mean-recall, recently. Table 1 shows the R@50/100,
mR@50/100, and F@50/100 on the Visual Genome dataset.
SQUAT outperforms all of the state-of-the-art methods at
F@50/100 measurements. It shows that although the recall
of SQUAT degrades, the trade-off between the recall and
the mean recall is the best in the state-of-the-art methods.

2The most frequent entity class is 35 times larger than the least frequent
one and the most frequent predicate class is 8,000 times larger than the least
frequent one.
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Methods PredCls SGCls SGDet
R@50 / 100 mR@50/100 F@50 / 100 R@50 / 100 mR@50/100 F@50 / 100 R@50 / 100 mR@50/100 F@50 / 100

IMP+‡ [11] 61.1 / 63.1 11.0 / 11.8 18.6 / 19.9 37.5 / 38.5 6.2 / 6.5 10.6 / 11.1 25.9 / 31.2 4.2 / 5.2 7.2 / 8.9
Motifs‡ [28] 66.0 / 67.9 14.6 / 15.8 23.9 / 25.6 39.1 / 39.9 8.0 / 8.5 13.3 / 14.0 32.1 / 36.9 5.5 / 6.8 9.4 / 11.5
Motifs‡† [28] 64.6 / 66.7 18.5 / 20.0 28.8 / 30.8 37.9 / 38.8 11.1 / 11.8 17.2 / 18.1 30.5 / 35.4 8.2 / 9.7 12.9 / 15.2
RelDN [30] 64.8 / 66.7 15.8 / 17.2 25.4 / 27.3 38.1 / 39.3 9.3 / 9.6 15.0 / 15.4 31.4 / 35.9 6.0 / 7.3 7.2 / 8.9
VCTree‡ [22] 65.5 / 67.4 15.4 / 16.6 24.9 / 26.6 38.9 / 39.8 7.4 / 7.9 12.4 / 13.2 31.8 / 36.1 6.6 / 7.7 10.9 / 12.7
MSDN [11] 64.6 / 66.6 15.9 / 17.5 25.5 / 27.7 38.4 / 39.8 9.3 / 9.7 15.0 / 15.6 31.9 / 36.6 6.1 / 7.2 10.2 / 12.0
GPS-Net [12] 65.2 / 67.1 15.2 / 16.6 24.7 / 26.6 39.2 / 37.8 8.5 / 9.1 14.0 / 14.7 31.1 / 35.9 6.7 / 8.6 11.0 / 13.9
RU-Net [14] 67.7 / 69.6 - / 24.2 - / 35.9 42.4 / 43.3 - / 14.6 - / 21.8 32.9 / 37.5 - / 10.8 - / 16.8
HL-Net [13] 60.7 / 67.0 - / 22.8 - / 34.0 42.6 / 43.5 - / 13.5 - / 20.6 33.7 / 38.1 - / 9.2 - / 14.8
VCTree-TDE [21] 47.2 / 51.6 25.4 / 28.7 33.0 / 36.9 25.4 / 27.9 12.2 / 14.0 16.5 / 18.6 19.4 / 23.2 9.3 / 11.1 12.6 / 15.0
Seq2Seq [15] 66.4 / 68.5 26.1 / 30.5 37.5 / 42.2 38.3 / 39.0 14.7 / 16.2 21.2 / 22.9 30.9 / 34.4 9.6 / 12.1 14.6 / 17.9
GPS-Net‡† [12] 64.4 / 66.7 19.2 / 21.4 29.6 / 32.4 37.5 / 38.6 11.7 / 12.5 17.8 / 18.9 27.8 / 32.1 7.4 / 9.5 11.7 / 14.7
JMSGG [24] 70.8 / 71.7 24.9 / 28.0 36.8 / 40.3 43.4 / 44.2 13.1 / 14.7 20.1 / 22.1 29.3 / 32.3 9.8 / 11.8 14.7 / 17.3
BGNN [10]† 59.2 / 61.3 30.4 / 32.9 40.2 / 42.8 37.4 / 38.5 14.3 / 16.5 20.7 / 23.1 31.0 / 35.8 10.7 / 12.6 15.9 / 18.7

SQUAT† (Ours) 55.7 / 57.9 30.9 / 33.4 39.7 / 42.4 33.1 / 34.4 17.5 / 18.8 22.9 / 24.3 24.5 / 28.9 14.1 / 16.5 17.9 / 21.0

Table 1. Recall, mean recall and F score of three subtasks on Visual Genome (VG) dataset with graph constraints. † denotes that the bi-level
sampling [10] is applied for the model. ‡ denotes that the results are reported from the [2]. Bold numbers indicate the best performances
and underlined numbers indicate the second best performances.
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IMP+‡∗ [11] - 20.3 28.9 - 12.1 16.9 - 5.4 8.0
Frequency‡∗ [28] - 24.8 37.3 - 13.5 19.6 - 5.9 8.9
Motifs‡∗ [28] - 27.5 37.9 - 15.4 20.6 - 9.3 12.9
KERN [2] - 36.3 49.0 - 19.8 26.2 - 11.7 16.0
GB-NET-β [27] - 44.5 58.7 - 25.6 32.1 - 11.7 16.6

Motifs [28] 19.9 32.8 44.7 11.3 19.0 25.0 7.5 12.5 16.9
VCTree [22] 21.4 35.6 47.8 14.3 23.3 31.4 7.5 12.5 16.7
VCTree-TDE [21] 20.9 32.4 41.5 12.4 19.1 25.5 7.8 11.5 15.2
GPS-Net†∗ [12] 29.4 45.4 57.1 8.3 15.9 23.1 7.9 12.1 16.7
SQUAT † 31.8 46.0 57.8 18.7 27.1 32.6 12.1 17.9 22.5

Table 2. The scene graph generation performance of three subtasks on the Visual Genome (VG) dataset without graph constraints. †
denotes that the bi-level sampling [10] is applied for the model. ∗ denotes that the model is reproduced with the authors’ code. ‡ denotes
that the results are reported from the [2]. Models in the first group use pre-trained Faster R-CNN with VGG16 backbone. Bold numbers
indicate the best performances.

model head body tail mR@100 R@100 F@100

VCTree-TDE [21] 24.5 13.9 0.1 11.1 23.2 15.0
GPSNet† [12] 30.4 8.5 3.8 9.5 32.1 14.7
BGNN† [10] 34.0 12.9 6.0 12.6 35.8 18.6

SQUAT † (Ours) 29.5 16.4 12.4 16.5 28.9 21.0

Table 3. mR@100 on the SGDet setting for head, body, and tail
classes. † denotes that the bi-level sampling is applied on the
model to achieve these results. Bold numbers indicate the best
performances.

2.2. Mean recall with no-graph constraints

Following [16,28], we also evaluate SQUAT without the
graph constraint, i.e., each edge can have multiple relation-
ships. For each edge, while mR@K evaluates only one

predicate with the highest score, ng-mR@K evaluates all
50 predicates. As shown in Table. 2, on the Visual Genome
dataset, SQUAT outperforms the state-of-the-art models.
Especially, SQUAT outperforms the state-of-the-art models
by a large margin of ng-mR@K on the SGDet settings as it
does in the evaluation of mR@K.

2.3. Recall for head, body, and tail classes

Following [10], we split the relationship classes into
three sets according to the number of relationship instances:
head (more than 10k), body (0.5k∼10k), and tail (less than
0.5k) classes. Table 3 shows the mR@100 for each group.
SQUAT outperforms the state-of-the-art methods for body
and tail classes by a large margin. Especially for the tail
classes, SQUAT achieves twice mR@100 as that of BGNN.



model simple moderate complex mR@100

BGNN [18] 15.52 12.71 9.87 12.46
SQUAT 19.54 16.80 13.28 16.47

Gain (%) 25.90 32.18 34.55 32.18

Table 4. mR@100 on the simple, moderate, and complex sets.

It shows that the scene graphs from SQUAT have more
meaningful predicates, i.e., tail classes such as ‘walking in’,
instead of general predicates, i.e., head classes such as ‘on’.

2.4. Recall on simple, moderate, and complex scenes

As shown in Tables 1 and 2 in the main paper, the
SQUAT shows exceptionally high performance on the most
complicated task, i.e., SGDet, and the most complex
dataset, i.e., Visual Genome. Furthermore, to analyze the
performance on the complexity of the scene, we divide the
image sets in the Visual Genome into three disjoint sets ac-
cording to the number of objects in the scene: simple (≤ 9),
moderate (10 ∼ 16), and complex (≥ 17). As shown in
Table 4, the SQUAT shows a higher performance gain on
the more complex images; the SQUAT is more effective for
realistic and complex scenes.

3. SQUAT with off-the-shelf method
To reduce the biases of the scene graph generation

datasets, many off-the-shelf methods [3–6, 8, 9, 20, 23, 25,
26, 29] are proposed. For a fair comparison, we do not
compare the off-the-shelf methods with SQUAT in the main
paper. We applied Internal and External Data Transfer
(IETrans) and reweighting (Rwt) [29], which are the state-
of-the-art off-the-shelf learning methods for scene graph
generation, to the SQUAT. For efficiency, we only report
a model with the best performance for each off-the-shelf
method. As shown in Table 5, without careful hyper-
parameter search, SQUAT+IETrans+Rwt model outper-
forms VCTree+IETrans+Rwt model and outperforms other
off-the-shelf methods with Motifs [28], Transformer [21],
and VCTree [22]. It shows that other off-the-shelf learning
methods can be adopted for SQUAT to improve its perfor-
mance.

4. Additional qualitative results
In Fig. 1 and 2, we show the qualitative results for

SQUAT model. We also compare the results of SQUAT
with the results from ablated models: model without node
updates and model without edge updates. The full SQUAT
model shows the most informative scene graph compared
to the other ablated models. There are some false positives,
such as (‘mouth of elephant’, ‘eye of elephant’) in Fig. 1
bottom and (‘glasses on man’, ‘man and woman’) in Fig. 2

model
SGDet

mR@20 mR@50 mR@100

VCTree [22] 4.9 6.6 7.7
VCTree+TDE [21] 6.3 8.6 10.3
VCTree+PCPL ‡ [25] 8.1 10.8 12.6
VCTree+DLFE [3] 8.6 11.8 13.8
VCTree+TDE+EBM [20] 7.1 9.69 11.6
Transformer+BPL+SA [6] 10.7 13.5 15.6
Transformer+HML [4] 11.4 15.0 17.7
GPSNet+IETrans+Rwt [29] - 16.2 18.8

SQUAT +IETrans+Rwt [29] 12.0 16.3 19.1

Table 5. The ablation study with the off-the-shelf learning methods
on Visual Genome (VG) dataset with graph constraint. ‡ denotes
that the results are reported from the [3]. The other results are from
each of the original papers.

top, however, such errors are often caused by the incom-
pleteness of the dataset, and hence it can be seen as a true
positive. ‘dog near window’ in Fig. 1 top, ‘zebra behind ele-
phant’ in Fig. 1 bottom, and ‘man standing on sidewalk’ in
Fig. 2 bottom are predicted by only the full SQUAT model.
It shows that quad attention modules can capture more in-
formative contextual information.

In Fig. 3, we show the qualitative results for the edge se-
lection module in SQUAT. The edge selection module suc-
cessfully selects the valid edges. In particular, the edge se-
lection module removes the edges between the background
and the foreground, e.g., most of the edges of ‘sunhat’ and
‘scarf’ are removed in Fig. 3 (a) and (b), respectively. Also,
the edges between the boxes which denote the same ob-
jects are removed. For example, the edges of (‘tea’, ‘cof-
fee’) and (‘mug’, ‘coffee cup’) are removed in Fig. 3 (d). It
shows that the edge selection module successfully removed
invalid edges and helps the informative message passing in
the quad attention module.
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Figure 1. The qualitative results for SQUAT. (a) The detection results from pre-trained Faster R-CNN [18]. (b) The ground-truth scene
graph. (c) The results from full SQUAT. (d) The results from SQUAT without edge update, i.e., the edge-to-edge and the edge-to-node
attentions. (e) The results from SQUAT without node update, i.e., the node-to-edge and the node-to-node attentions. Full SQUAT shows
more informative scene graphs than the other ablated models. The green arrows denote the true positives and the red arrows denote the
false positives.
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Figure 2. The qualitative results for SQUAT. (a) The detection results from pre-trained Faster R-CNN [18]. (b) The ground-truth scene
graph. (c) The results from full SQUAT. (d) The results from SQUAT without edge update, i.e., the edge-to-edge and the edge-to-node
attentions. (e) The results from SQUAT without node update, i.e., the node-to-edge and the node-to-node attentions. Full SQUAT shows
more informative scene graphs than the other ablated models. The green arrows denote the true positives and the red arrows denote the
false positives.
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Figure 3. The qualitative results for the edge selection module on the Open Images v6 dataset. The graph denotes the results of the ESMQ

and the green arrows denote the valid edges. The boxes with the red class denote the incorrect prediction or the background.
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