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1. Dense 3D Vision Tasks
1.1. Monocular Depth Estimation

Following the results on monocular depth estimation in
the main paper, we describe the implementation details of
the training, show additional results on different scenes and
provide additional metrics on different test scenes.

Implementation Details For all our depth estimation ex-
periments, we use PyTorch [6] and train for 20 epochs for
comparability using Adam [3]. Monocular approaches are
trained with a batch size of 12 on one NVIDIA RTX-3090
GPU. We chose λs = 10−3 and sample S with T = 10
frames offset due to small relative camera movement be-
tween frames and the high frame rate. The RGB inputs are
scaled to 480×320 for supervised training and to 320×160
for self-supervised training, respectively. The depth net-
work regresses dense depth predictions on four pyramid
levels, each with half the resolution of the previous. Pose
network and augmentations follow [2]. We choose an ini-
tial learning rate of 1 × 10−4 for 15 epochs, which we de-
crease to 1 × 10−5 after 15 epochs in the self-supervised
setting. For the supervised case, we start with a learning
rate of 1× 10−3, which we decrease every five epochs by a
factor of ten.

1.1.1 Quantitative evaluation

Test scenes. Table 1 summarizes the extensive quan-
titative evaluation of the supervised training with differ-
ent depth modalities as supervision signal for different test
scenes. Test scene 1 has a similar background compared to
the training scenes and includes additional unseen objects.
The scene is also observed from viewing angles that dif-
fer significantly from the training data. The background in

test scene 2 is only partly observed in the training data and
it includes mostly unseen objects. Test scene 3 is similar
to test scene 2, but with a modified object layout and dif-
ficult lighting in the background from an additional bright
light source above the scene. The additional test set with
(partly) seen scenes is an additional test split which includes
the first 10 frames of each training sequence. Please note
that these frames have not been used during training. Here,
we first test all predictions against the rendered ground truth
(Top) and additionally on each individual respective modal-
ity (Bottom) to highlight the overfitting issue of invalid
ground truth from each modality. The results suggest that
overall the supervision with accurate rendered ground truth
achieves to generalize best for (mostly) unknown scenes.
It is noticeable, that the active stereo achieves to produce
good predictions for transparent objects and also performs
well for reflective ones. The I-ToF and D-ToF predictions
suffer from incorrect ground truth values for such objects.

Overfitting on (partly) seen scenes. The (partly) seen
scene shows generally lower overall errors for all modali-
ties as compared to the (mostly) unseen test scenes 1,2, and
3. Again, the active stereo can provide decent depth su-
pervision for reflective and transparent objects, where the
ToF sensors cannot provide valid depth. The prediction of
the background of the scene performs worst for the active
stereo, as the textureless wall is still problematic for the sen-
sor.

When testing on the respective modality itself, the over-
fitting issue due to incorrect depth values of the sensor be-
comes apparent. It can be noticed, that for objects where the
respective sensor cannot yield accurate depth values (e.g.
transparent objects for I-ToF or reflective objects for D-
ToF), the errors are significantly lower, indicating overfit-
ting to the specific sensor modality.
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Table 1. Depth prediction comparison when training with different modalities and tested on different unseen scenes and seen
scenes. (Top) Evaluation against GT of depth predictions on the test set with dense supervision from different depth modalities. (Bottom)
Predictions evaluated on respective modality. Error is reported as Sq.Rel. and RMSE in mm.

Mask Full Scene Background All Objects Textured Reflective Transparent
Metric Sq.Rel. RMSE Sq.Rel. RMSE Sq.Rel. RMSE Sq.Rel. RMSE Sq.Rel. RMSE Sq.Rel. RMSE

Test1

I-ToF 24.78 148.09 22.25 151.07 29.62 123.19 16.47 99.08 102.79 214.60 44.29 134.44
D-ToF 24.23 151.72 23.74 159.28 22.85 110.88 16.22 101.12 57.14 148.61 30.23 107.23
Active Stereo 32.15 173.72 33.84 184.16 22.23 116.57 19.55 114.07 64.27 167.71 12.92 69.49

Test2

I-ToF 27.42 123.79 22.66 116.86 39.85 139.67 48.66 144.92 16.15 99.44 25.15 122.25
D-ToF 23.00 115.40 21.18 113.27 27.89 119.59 30.00 112.92 15.81 90.89 23.73 117.72
Active Stereo 25.94 124.17 25.50 126.28 27.18 117.04 32.81 121.24 16.40 101.86 15.73 95.27

Test3

I-ToF 36.82 152.51 35.92 153.26 38.75 147.14 34.09 127.51 20.21 110.85 55.09 183.14
D-ToF 32.99 145.50 35.64 153.07 25.90 120.35 19.92 96.01 21.59 105.41 37.26 149.66
Active Stereo 31.63 141.77 35.24 151.37 22.44 110.42 23.47 106.63 14.49 94.51 21.21 109.53

T.Seen

I-ToF 9.87 77.99 4.62 57.10 33.91 133.46 6.18 60.48 35.65 119.76 91.30 224.27
D-ToF 15.43 93.31 11.62 79.89 31.12 123.97 4.40 51.91 17.42 82.29 89.19 212.55
Active Stereo 9.43 88.30 9.28 88.24 9.11 75.21 6.32 65.54 12.98 65.73 16.62 98.75

Tested on Modality:

TestSeen

I-ToF 8.34 52.29 8.57 50.00 7.01 58.85 3.80 43.44 23.28 95.38 13.69 65.41
D-ToF 8.05 50.43 6.82 45.50 13.52 66.34 9.00 54.15 30.91 87.71 27.92 87.32
Active Stereo 39.25 101.76 40.87 102.29 30.32 90.00 32.24 90.49 23.36 72.21 37.25 101.23
GT 1.12 28.81 0.71 24.41 2.65 40.41 1.83 34.89 2.16 29.55 5.02 52.43

1.1.2 Qualitative predictions

Figures 1, 2 and 3 show predictions on exemplary frames
of the test scenes 1, 2 and 3, together with the different
sensor modalities and the error plot of the prediction com-
pared against the ground truth. The training with rendered
ground truth generally performs best. Both ToF sensors
show incorrect depth values for reflective or transparent ob-
jects which also translates to incorrect predictions in these
areas (compare Fig. 1. The predictions when training with
active stereo as supervision are more blurry and show less
distinct edges at depth boundaries when compared to other
modalities, which may arise from many depth pixels being
invalidated by the sensors around such boundaries (com-
pare Fig. 2). The very challenging test scene 3 with bright
lighting and many unseen objects is difficult to predict for
all training setups (compare Fig. 3. We can see similar ar-
tifacts as described above. Additionally, the unseen trophy
object with partly reflective and partly transparent material
shows large errors for the sensor inputs as well as for its
predictions. The desk surface is also incorrectly captured
by the D-ToF sensors due to large reflections and MPI from
the background.

1.2. Implicit Reconstruction

Implementation Details As mentioned in the main paper,
we follow NeRF [4] and build upon the work of [7] with-

Table 2. Relative Pose Error of SLAM and SfM.

Error Direct (DSO) Dense dToF Dense iToF Dense AS SfM
rot [deg] 0.22 0.18 0.51 0.56 10.76
trans [cm] 0.27 0.31 0.68 0.62 2.86

out a depth completion network, but leverage the respective
sensor depth with a scale-invariant depth loss LD. We use
images with a resolution of 640×480 and process batches of
1024 rays. We set λD to 0.1 and the learning rate to 0.0005
and optimize for 100k iterations with Adam optimizer [3].

1.3. Camera Pose Estimation

The analysis above focuses on dense monocular depth
estimation and novel view synthesis as recent and im-
portant approaches - for which pixelwise prediction and
evaluation are crucial. We add results for direct SLAM
(DSO) [1], KinectFusion [5] with different depth modali-
ties, and COLMAP SfM [8] in Fig. 4.

Tab. 2 summarizes the relative pose error for different
approaches (cf. Fig 4). Note the pose accuracy results for
KinectFusion [5] align with the depth results from Tab.2 in
the main paper.



Figure 1. Qualitative evaluation on test scene 1. Each depth modality, the network prediction when trained with supervision of each
modality, and the error, are shown as qualitative evaluation.



Figure 2. Qualitative evaluation on test scene 2. Each depth modality, the network prediction when trained with supervision of each
modality, and the error, are shown as qualitative evaluation.



Figure 3. Qualitative evaluation on test scene 3. Each depth modality, the network prediction when trained with supervision of each
modality, and the error, are shown as qualitative evaluation.



Figure 4. Qualitative reconstruction results from SLAM and SfM.



2. Dataset

2.1. Detailed Dataset Description

Sec. 3 of the main paper mentioned that our dataset uses
multiple images/depth sensors to collect the dataset with
highly accurate annotations of the scene using the robotic
arm in a synchronized manner. This section shows the de-
tailed description of data we include in our dataset.

2.1.1 Polarization Camera

Fig. 5 shows examples of images included for the polariza-
tion camera. As mentioned in Sec. 2 of the main paper, a
polarization camera provides images with different polar-
ization angles, which can extract cues like the surface nor-
mal by using the physical property of object material in the
scene. The polarization camera we used in our dataset (See
Sec. 3 in the main paper) provides polarized images at 4
different angles (0, 90, 180 270 degrees) which are saved
in a single 2x2 image (Fig. 5, (a)). A regular RGB im-
age is obtained by averaging the 4 images (Fig. 5, (b)). To
showcase the results of the depth map trained with different
depth cameras, we include warped depth images from each
depth camera into the polarization camera coordinates using
the extrinsic between the two cameras and its depth image
(Fig. 5, (d-g)). These can be additionally used for RGBD-
based depth completion research. On top of that, we include
extra information, such as instance map (Fig. 5, (c)) to help
train or validate pipelines for categorical level tasks, accu-
rate 6d pose of the camera as the 4x4 matrix obtained from
the robotic arm, extrinsic transformation between cameras
as 4x4 matrices and camera intrinsics as 3x3 matrix.

2.1.2 D-ToF Camera

Fig. 6 shows an example of images included for the D-ToF
camera. Direct ToF (D-ToF) camera senses the depth infor-
mation of its surrounding by emitting an infrared signal and
measuring the difference in time between the emitted and
received signal. The quality of this modality highly depends
on the reflection of the signal. It often suffers from spe-
cific physical noise such as Multi-Path-Interference (MPI)
or strong material dependent artefacts (Fig. 9). For the D-
ToF camera, we provide the depth map from the camera
(Fig. 6, (a)) as well as its rendered ground truth depth map
(Fig. 6, (b)) such that one can also research on D-ToF refine-
ment pipelines to reduce such errors. As in the polarization
camera, we include extra information such as instance label
map (Fig. 6, (c)), camera pose, intrinsic and extrinsics of
the camera as well.

2.1.3 I-ToF Camera

Fig. 7 shows image examples for the I-ToF camera. Indi-
rect ToF (I-ToF) cameras sense the depth information of
their surrounding by emitting a frequency modulated sig-
nal and measuring the return signal. Unlike Direct ToF
(D-ToF), I-ToF cameras do not calculate the time differ-
ence to infer the depth. Instead, the camera correlates
the returning signal with phase-shifted emitting signals to
generate 4 different measurements, called correlation im-
ages. These are measured as sinus functions of distance
((sin(d), cos(d),− sin(d),− cos(d)) = (c1, c2, c3, c4) in
Fig. 7, (a)). Either arc-tangent formula or convolutional
neural networks can be used to extract depth information
from the correlation images. As I-ToF modality also re-
lies on the reflection of the signal like in D-ToF, it suffers
from similar artefacts, such as MPI and material dependent
artefacts (compare qualitative results of the test scenes in
Figs. 1, 2 and 3). Here, we provide raw correlation im-
ages and depth map from the camera (see Fig. 7, (a,b)) as
well as its rendered ground truth depth (Fig. 7, (c)) such
that one can train I-ToF depth improvement pipelines either
from raw signal or from I-ToF depth itself. As the other
cameras, extras such as instance map (Fig. 7, (d)), camera
pose, intrinsic and extrinsics are included.

2.1.4 Active Stereo Camera

Fig. 8 shows the examples of images included for the Ac-
tive Stereo camera. Stereo depth estimation infers depth
using and photometric consistency and geometrical con-
straints from epipolar geometry and triangulates the depth
map from the disparity between left and right cameras. As
the disparity is calculated via matching on the image itself,
the stereo based depth estimation methods suffers less from
the specific material, but they suffer from other aspects such
as stereo occlusion and large texture-less regions. Active
projection (Active Stereo) is used to overcome this issue.
We provide both, active and passive stereo left / right im-
ages (Fig. 8, (a),(b)) and raw depth from the camera (active,
Fig. 8, (c)) as well as the rendered ground truth (Fig. 8, (d)).
This allows to use our dataset to improve stereo methods
from either passive or active stereo and also depth refine-
ment pipelines. Similar to the other cameras, extras such as
instance map (Fig. 8, (e)), camera pose, intrinsic and extrin-
sics are included.

2.2. Error Analysis on Different Modality

In this section, we show specific errors on each depth
modality to illustrate the implication of the depth quality
when the given modality is used as the ground truth, as
well as advantage of using our rendered depth as the ground
truth.



Figure 5. Example of the images included for the polarization camera input (top) together with instance label map and depth estimates
warped onto the same coordinate reference frame.

Figure 6. Example of the images included for the D-ToF camera: its depth map (left), ground truth depth (centre) and an object instance
label map (right).

2.2.1 D-ToF Camera

As mentioned in Subsec. 2.1.2, D-ToF modality suffers
from its own reflection-based nature, such as MPI and mate-
rial dependent artefacts. When the angle of the surface nor-
mal of the scene is close to the incident angle of the infrared
signal, the strength of the reflected signal becomes weak
due to scattering effects (Fig. 9, (a) blue arrow) while multi-
ple scattered signals from the other surfaces which has more
traveling distance are received and with stronger strength
(Fig. 9, (a) red arrow) and interfere with the original signal
(MPI), producing a wrong measurement of the depth on the
area with further distance which looks like a reflection or
shadow of the object to the surface (Fig. 9, (b) red marker).
This effect can be intensified when the surface material is
reflective, which gives even stronger artefact as its reflec-
tive surface bounces even weaker and noisier signal with

less attenuation (Fig. 9, (a,b) yellow arrow&marker). On
the other hands, when the surface material is transparent,
the emitted infrared signal rather goes through the object in
the both ways (Fig. 9, (a) green arrow) which at the end ig-
nores the object and the sensor produce the depth value as
similar level as its background (Fig. 9, (b) green marker -
material dependent artefact). Quality of the depth map de-
grades slightly around some boundaries after warping into
the RGB frame (Fig. 10, (b), red), while the invalid regions
actually helps to invalidate more area on wrong depth espe-
cially on the reflective objects (Fig. 10, (b), green) , which
might become beneficial when it is used in the training.

2.2.2 I-ToF Camera

As mentioned in Subsec. 2.1.3, I-ToF modality suffers by
its own reflection based nature as well similar to D-ToF,



Figure 7. Example of the images included for the I-ToF camera.

Figure 8. Example of the images included for the Active Stereo camera.

such as MPI and material dependent artefact (Fig. 11. Al-
though the quality of depth itself seems better as the depth
itself is more dense (with less invalid region) and amount
of the artefacts are less, it is hard to say I-ToF modality is
better than D-ToF as these two camera are in different price
range and power level. Also less invalid area but rather with
wrong depth didn’t help invalidating depth (Fig. 12) not like
in D-ToF case, which could result in artefact in the predic-
tion when it is used as GT during the training.

2.2.3 Active Stereo Camera

As the stereo camera uses left and right matching with pho-
toelectric cue, depth map suffers less on the challenging
material as the projection can be visible on the surface as
well as left-right check can be performed to invalidate re-
gion with the wrong depth. For this reason, depth on glass
or the reflective object is significantly more accurate com-
pared to either of ToF modality (Fig. 13, green arrow). On



Figure 9. Detailed ray paths with MPI and surface material induced error on D-ToF modality. While D-ToF produces dense and sharp
depth, its quality is highly dependent on the surface material and the incident angle.

Figure 10. Error after warping D-ToF into RGB view. Slight errors are introduced on some edges (red) while expansion of the invalid area
helps to invalidate on the reflective objects (green).

the other hands, due to its nature of pattern projection far
distance that depth quality gets worsen as the scene gets
further (Fig. 13, red arrow) the projection pattern gets at-
tenuated and spread in the far distance. Moreover, the depth
map in general is more blurry, jittery, sparse and has wrong
values on some regions without being invalidated (Fig. 13,
orange arrow) which can introduce negative influence when
it is used as GT, such as blurriness and depth jittering. Er-
ror introduced by warping is trivial (Fig. 14) as the original
depth map is already blurry and sparse.



Figure 11. Depth quality from I-ToF camera. I-ToF modality suffers from same type of artefect as D-ToF. While depth map itself is more
sense and suffers less from MPI artefact on the table.

Figure 12. Error after warping I-ToF into RGB view. Not like D-ToF, most of depth error exists without being invalidated, which might
introduce more error when it used as GT during the training.



Figure 13. Depth quality from Active Stereo camera. While depth map suffers less on the challenging material, quality of depth itself is far
behind either of ToF modality in multiple aspects, such as sharpness, variance, sparsity.

Figure 14. Error after warping Active Stereo into RGB view. Note that there isn’t significant change in the depth quality after the warping.



2.3. Detailed Background and Objects Description

As described in Sec. 4 in the main paper, our dataset
comprises a total of 13 scenes divided into 10 scenes for
training and 3 testing scenes composed of a mixture of 4
different chairs, 6 different tables, 64 household objects
from 8 plus 4 different categories (i.e. cup, teapot, bot-
tle, remote, boxes, can, glass, cutlery and tube, shoe, plas-
tic kitchenware, trophy) and and 7 different indoor areas.
Test sets have 1 unseen background and 2 seen backgrounds
with and without different lighting and contain a mixture of
seen/unseen objects from seen/unseen categories. In this
section, we show detailed images of backgrounds, chairs,
tables, and other objects. Fig. 15 and 17 respectively show
images of 3 chairs and 6 tables used in the dataset and their
corresponding meshes. Fig. 18 and 19 show a collection
of household objects used in training and test set. Fig. 16
shows 9 backgrounds used in the dataset and their corre-
sponding meshes.

2.3.1 Detailed Scene Description

As described, our training set is composed of 10 scenes,
and the test set is composed of 3 scenes. For each scene, we
include 2 different trajectories. Each trajectory covers 2 se-
tups with and without objects (naked scene). This sums up
to 800-1200 frames per scene and a total of ca. 10k frames.
In this section, we show several sample images of the scenes
in Fig. 20, 21, and 22, 23. Each of them consists of an an-
notated mesh and RGB images with different types of ren-
dering, which show the diversity and quality of our dataset.

2.3.2 Partial Scanning of the Scene and Mesh Fitting

As mentioned in Sec. 3 in the main paper, we use partial
scanning and mesh fitting to annotate background, large
objects, and objects outside the robotic workspace. This
section shows images of partial scanning and the mesh fit-
ting from one of the scenes as an example. The green
box in Fig. 24, (a) shows annotated meshes of the objects
by the robotic arm. Once the objects are annotated, the
scene is partially scanned with multiple viewpoints to make
the scanning dense and cover multiple facets of the back-
ground. Note that the center of the scanning is not yet in
the robot base coordinates (Fig. 24, (a) blue box). Once
the partial scanning is done, the scanned mesh is then fit
onto the annotated objects, such that the partially scanned
mesh origin concides with the robot base (Fig. 24, (b)).
Once the scanned mesh is put to robot base coordinates,
we fit background, large objects, and distant objects meshes
also in robot base coordinates to annotate them (Fig. 25,
(a)). Fig. 25, (b-c) shows the result of the annotated mesh.
For the mesh fitting, we used Artec Studio 10 Professional

(Artec 3D, Luxembourg) which runs a point correspon-
dence and ICP-based method to fit the meshes.



Figure 15. Chairs used in the dataset. Chairs in group (a) are used for the training set and the chair in (b) is used for the test set.



Figure 16. Backgrounds used in the dataset. Note that one of the background in the group (b) is also included in the training set, but we
varied the lighting condition to provide different various factors for evaluation.



Figure 17. Tables used in the dataset. Tables in group (a) are used for the training set and the table in (b) is used for the test set. Note that,
unlike small objects or chairs, we decide not to scan some parts of the large tables (e.g. end of their legs) as the cameras cannot see the part
in their trajectories.

Figure 18. Collection of small household objects used in the training set. Objects from 8 household categories are used in the training set,
3 of which have photometrically challenging surface material - partially reflective (can), transparent (glass/plastic), reflective (cutlery).



Figure 19. Collection of small household objects used in the test set. The test set comprises a mixture of seen (left column) and unseen
(mid column) objects from 8 seen categories and a few objects from unseen categories (right column - tube, slipper, plastic kitchenware,
trophy) are used.

Figure 20. Example images from Training Scene 1. The annotated mesh is shown on the left together with an RGB view from the
scene (second from left) with and without objects. The overlayed masks (second from right) and the rendered depth (right) illustrate the
annotation quality of our data.



Figure 21. Example images from Training Scene 2-5. The annotated mesh for 4 different scenes is shown on the left together with an RGB
view from the scene (second from left) with and without objects. The overlayed masks (second from right) and the rendered depth (right)
illustrate the annotation quality of our data.



Figure 22. Example images from Training Scene 6-9. The annotated mesh for four different scenes is shown on the left together with an
RGB view from the scene (second from left) with and without objects. The overlayed masks (second from right) and the rendered depth
(right) illustrate the annotation quality of our data.



Figure 23. Example images from Training Scene 10 and Test scene 1-3. The annotated mesh is shown on the left together with an RGB
view from the scene (second from left) with and without objects. The overlayed masks (second from right) and the rendered depth (right)
illustrate the annotation quality of our data. Note that the test scene 2,3 are recorded in the exactly same pose and trajectory but with the
different lighting.



Figure 24. Example of partial scanning of the scene before and after the fitting on scene 13. Note that the center of the partial scanned
mesh is aligned to robot base (xyz coordinate marker) after fitting it onto the mesh of the annotated objects.

Figure 25. Example of far objects and background fitting onto partially scanned mesh. Left: Background and objects are fit to partial scans.
Centre: All annotated meshes are shown without partial scans. Right: Corresponding scene from the camera viewpoint with augmented
object masks. Note that the annotation quality of meshes with partial scans and robot arm is similar. The annotated meshes via partial
scanning are marked with red arrows.



References
[1] Jakob Engel, Vladlen Koltun, and Daniel Cremers. Direct

sparse odometry. IEEE transactions on pattern analysis and
machine intelligence, 40(3):611–625, 2017. 2

[2] Clément Godard, Oisin Mac Aodha, Michael Firman, and
Gabriel J. Brostow. Digging into self-supervised monocular
depth prediction. In The International Conference on Com-
puter Vision (ICCV), 2019. 1

[3] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. 1, 2

[4] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,
Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view synthe-
sis. Communications of the ACM, 65(1):99–106, 2021. 2

[5] Richard A. Newcombe, Shahram Izadi, Otmar Hilliges,
David Molyneaux, David Kim, Andrew J. Davison, Pushmeet
Kohi, Jamie Shotton, Steve Hodges, and Andrew Fitzgibbon.
Kinectfusion: Real-time dense surface mapping and tracking.
In 2011 10th IEEE International Symposium on Mixed and
Augmented Reality, pages 127–136, 2011. 2

[6] Adam Paszke, Sam Gross, Soumith Chintala, Gregory
Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Alban
Desmaison, Luca Antiga, and Adam Lerer. Automatic differ-
entiation in PyTorch. In NIPS-W, 2017. 1

[7] Barbara Roessle, Jonathan T Barron, Ben Mildenhall, Pratul P
Srinivasan, and Matthias Nießner. Dense depth priors for neu-
ral radiance fields from sparse input views. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 12892–12901, 2022. 2

[8] Johannes Lutz Schönberger and Jan-Michael Frahm.
Structure-from-motion revisited. In Conference on Computer
Vision and Pattern Recognition (CVPR), 2016. 2


	. Dense 3D Vision Tasks
	. Monocular Depth Estimation
	Quantitative evaluation
	Qualitative predictions

	. Implicit Reconstruction
	. Camera Pose Estimation

	. Dataset
	. Detailed Dataset Description
	Polarization Camera
	D-ToF Camera
	I-ToF Camera
	Active Stereo Camera

	. Error Analysis on Different Modality
	D-ToF Camera
	I-ToF Camera
	Active Stereo Camera

	. Detailed Background and Objects Description
	Detailed Scene Description
	Partial Scanning of the Scene and Mesh Fitting



