
A. Implementation Details
A.1. Models and Weights

All of our experiments are conducted using PyTorch
in combination with PyTorch Lightning. We use the Py-
Torch implementation of ERFNet provided by [13], which
can be found at: github.com/Eromera/erfnet pytorch, the
DeepLabV3+ [4] implementation from Segmentation Mod-
els PyTorch [9] and the SegFormer-B2 [17] implementation
from HuggingFace Transformers [16]. The weights for the
pre-trained ResNet-50 [8] backbones are taken from:

• DINO [3]: github.com/facebookresearch/dino
• MoCo v3 [5]: github.com/facebookresearch/moco-v3
• BarlowTwins [12]: github.com/facebookresearch/barlow

twins
• SwAV [2]: github.com/facebookresearch/swav

The weights of ERFNet pre-trained with DINO and MoCo
v3 can be found on github.com/tobiaskalb/feature-reuse-
css.

A.2. Hyperparameter Choice

For each model we start by tuning the LR on Cityscapes.
We ran experiments with LR ∈ {0.1, 0.05, 0.01, 0.005,
0.001, 0.0005}. We test intermediate LRs between the best
and second-best LR. For the pre-trained and augmentation
models, we choose the same LR. We chose the parame-
ters for FT and EWC using the Continual Hyperparameter
Framework [6].

A.3. Augmentations

For all our augmentations we utilize Albumentations
[1]. The augmentation schemes and their specific config-
urations that were used in our experiments are shown in
Tab. 1. The config of the AutoAlbum and further infor-
mation on the transformation pipelines can be found at:
github.com/tobiaskalb/feature-reuse-css. We chose the pa-
rameters of Distort to be similar to PhotometricDistortion
in MMSegmentation.

Method Albumentations Parameters
Distortion ColorJitter(brightness=0.2, contrast=0.5, saturation=0.5, hue=0.2)

ChannelShuffle(p=0.5)
Gaussian Blur GaussianBlur(blur limit=(3, 5))
Gaussian Noise GaussNoise(var limit=(30, 60)
AutoAlbument Augementation json config

Table 1. Additional augmentations used in the experiments with
there specified arguments and classes using Albumentations [1].

B. Amplitude Spectra of ACDC and Cityscapes
In Fig. 1 and Fig. 2, we compare the mean frequency am-

plitudes of the Cityscapes dataset with the different ACDC

Figure 1. Amplitude Spectra of Cityscapes, Cityscapes Blur,
Cityscapes Noise and the ACDC subsets. Specifically, the mid-
to high frequent components are increased for Snow and Rain. In
the frequency domain Cityscapes is much more similar to Night
than to any other of the ACDC subsets, specifically in the high-
frequent components of the images. We see that Blur is efficiently
cutting of high frequency components and that Snow and Rain con-
tain much more high frequent components.

subsets. We observe that ACDC contains much more mid-
and high-frequency components in the images, specifically
Snow and Rain contain more higher frequency components.
From the ACDC subsets Night is most similar to Cityscapes
in the frequency domain, which could explain why forget-
ting for Night is less. Furthermore, we also see that blurring
and the addition of noise to the image have a significant im-
pact in the frequency domain. The goal of adding noise and
gaussian blur is to remove the information contained in the
high-frequency components of the image so that the model
is forced to learn features focusing on low-frequency infor-
mation that can be reused on the target domain, where the
domains are more similar. The plots show that the methods
are effectively achieving this. However, we observe that
learning color-invariant features are much more effective at
mitigating forgetting, which we also confirm for other CNN
architectures in Appendix F.

C. Which BN layers are affected?
In Section 4.1, we found that changing population statis-

tics of BN layers are a significant cause of catastrophic for-
getting. To study which BN layer is most affected by the
changing population statistics, we re-estimate the BN statis-
tics for one layer at a time. The results are displayed in
Fig. 3. We observe that the first BN layer has the most im-
pact on forgetting and that the last BN layer in the first block
of each stage (e.g. layer2.0.downsample.1) has a compara-
ble impact when the remaining BN layers are not adjusted.
These specific layers coincide with blocks that were identi-
fied as critical layers by Zhang et al. [19]. Interestingly, in
a set of freezing experiments in which we freeze the model
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Figure 2. Amplitude spectrum in log-scale for Cityscapes the dif-
ferent ACDC subsets and the Cityscapes dataset using Blur and
Noise augmentation.
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Figure 3. Change in mIoU on the first task after re-estimation of
the population statistics of specific BN layers (horizontal axis).
Re-Estimation mostly affects the first BN layer and the last BN
layers in each stage’s first block.

up until specific intermediate layers, we observe that the se-
vere activation drift inside the model is always happening
in these specific layers. These results are discussed in the
Appendix D.
Furthermore, we also repeat the re-estimation experiment
only for the first BN layer. In Tab. 2 we still observe the
same trends as for re-estimating the statistics for all layers,
but with slightly reduced improvements. These results fur-
ther demonstrate that the change in population statistics is,
in fact, mostly affecting the very first BN layer.

D. Layer freezing experiments

Previous experiments have shown that a major cause of
forgetting is the representation shift in the early layers of the
model. So naturally the question arises: what happens if we
just freeze the early layers and fix the population statistics
of the BN layers during incremental training? Therefore, in
a set of experiments, we freeze an increasing number of lay-
ers during training on Night and Rain subset, starting from

CS Rain Night
Test CS Test CS Rain TestMethod

mIoU forg. mIoU forg. forg. mIoU

FT 72.0 33.2 57.7 27.8 24.9 45.3
AutoAlb. 72.2 10.7 59.4 15.2 18.2 47.4
Distort 71.7 19.0 60.9 20.8 26.6 47.5
ImageNet 73.9 22.5 60.9 26.1 23.4 46.1
MOCO 75.2 26.8 63.5 18.2 20.1 47.2
DINO 75.0 23.4 64.4 18.3 21.1 49.7
CN 71.2 12.7 58.6 21.1 25.9 43.4
Combined 73.7 6.4 67.8 9.4 16.7 49.8

Table 2. Performance in mIoU [%] on CS of the adapted model
f1 after re-estimating the population statistics only of the first
BN layer. By measuring and comparing the increase after re-
estimating BN statistics (∆mIoU), we see that re-estimating the
population statistics of only the first layer leads to significant im-
provement on the Cityscapes dataset.

Figure 4. Activation drift between f1 to f0 measured by relative
mIoU on the first task of the models stitched together at specific
layers (horizontal axis). During training on Night we froze layers
of ERFNet and DeepLabV3+ starting from the very first block.
We see that freezing layers during training on the new task fixes
early representation shift, but shifts the initial representation shift
to later layers.

the very first layer. The results in Tab. 3 show that freezing
the first few layers of the encoder has only a minor effect on
reducing forgetting or inhibiting learning on the new task.
Only when freezing a larger number of layers in the encoder
do we observe that the model is less affected by forgetting,
but in turn is also inhibited in adapting to Night. The reason
why the effect is not as prominent for early layers can be
seen in the layer stitching plots in Fig. 4. The representa-
tional shift of the initial layers is shifted to specific later lay-
ers, where the similarity drops down to the level of the non-
frozen model. The layers where this representation shift
occurs coincide with the layers that were most affected by
BN re-estimation. These results indicate that the low-level
feature change cannot be addressed by freezing early layers,
as it will inhibit learning or shift the activation drift simply
to later layers.
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Table 3. Performance in mIoU [%] on CS of the adapted model
f1 after re-estimating the population statistics only of the first
BN layer. By measuring and comparing the increase after re-
estimating BN statistics (∆mIoU), we see that re-estimating the
population statistics of only the first layer leads to significant im-
provement on the Cityscapes dataset.

CS Rain Night
Test CS Test CS Rain TestMethod

mIoU forg. mIoU forg. forg. mIoU

FT 72.0 33.2 57.7 27.8 24.9 45.3
AutoAlb. 72.2 10.7 59.4 15.2 18.2 47.4
Distort 71.7 19.0 60.9 20.8 26.6 47.5
ImageNet 73.9 22.5 60.9 26.1 23.4 46.1
MOCO 75.2 26.8 63.5 18.2 20.1 47.2
DINO 75.0 23.4 64.4 18.3 21.1 49.7
CN 71.2 12.7 58.6 21.1 25.9 43.4
Combined 73.7 6.4 67.8 9.4 16.7 49.8

Table 4. Results for CS → Rain→ Night with DeepLabV3+. We
see that the combination of pre-training with DINO, AutoAlbum
and Continual Normalization (denoted as Combined) drastically
decreases forgetting even in longer task sequences.

E. Longer task sequence

We evaluate the training schemes also on a multi-step
domain-increment with CS, Rain and Night, where augmen-
tations are again only used during training on CS. Tab. 4
shows that pre-training and augmentation can decrease for-
getting also in a longer task sequences, reducing forgetting
not only for the initial task, but for the intermediate task
as well. This indicates that the once general low-level fea-
tures are learned their benefits remain even after the model
is fine-tuned on a new domain without the additional aug-
mentations. However, we note that the interaction between
these domains can be intricate, as we observe a reduction in
forgetting on CS after the model was trained on Night when
no augmentations are used. Furthermore, we also noticed in
our preliminary experiments that the order or similarity of
the tasks further impacts the severity of forgetting.

F. Ablation on architectures
We validate our results on the effect of pre-training

and augmentation observed previously on DeepLabv3+ also
for ERFNet [13], BiSeNet V2 [18], HRNetV2 [15] and
RTFormer [14] in Tabs. 5 to 7. We select these net-
works as they have very distinct architectures compared
to DeepLabV3+. HRNetV2 and BiSeNet V2 use multi-
ple parallel branches, ERFNet has significant lower num-
ber of parameters, and RTFormer is computationally effi-
cient transformer-based model. Tabs. 5 to 7 show that aug-
mentations and pre-training also significantly reduce for-
getting for those selected architectures. Specifically, we
see that the combination of pre-training and AutoAlbum
leads to significant improvements for all models across all
datasets. Furthermore, we see that ERFNet and BiSeNet
V2 are much more affected by catastrophic forgetting due
to its much smaller size. However, besides this difference,
we overall see very similar results, as Distortion and Au-
toAlbum are the most effective methods to enforce effective
feature reuse and thus a reduction of forgetting. Moreover,
we make the same observations for ImageNet pre-training,
where we achieve higher mIoU on the target dataset but
are not as effective at reducing forgetting compared to the
models trained with augmentation. The only noticeable dif-
ference between the results of BiSeNet V2, ERFNet and
DeepLabv3+ is the worse performance on Snow, which is
drastically worse than the performance of the different sub-
sets, although we use the same training regime as before.
Finally, for RTFormer-Base we surprisingly discover results
that are similar to CNN architectures than to the results of
SegFormer. We hypothesize that this is caused by the use
of Batch Normalization instead of Layer Normalization in
the Encoder of RTFormer. These results, combined with the
observation that SegFormer is less affected by the domain-
shift, demonstrate that while our results are applicable to
different CNN architectures using BN, catastrophic forget-
ting significantly varies between architectures, as previous
work has pointed out [10, 11].

G. Comparison of Class- and Domain-
Incremental Learning

Fig. 5 shows a comparison of layer stitching for class-
and domain-incremental learning. In the class-incremental
setting, we use PascalVOC2012 [7] with the PascalVOC-
15-5 split and in the domain-incremental setting, we use
the same Cityscapes to ACDC setups as before. We see
that during class-incremental learning, the encoder layers
up until layer4.0 are not at all affected by activation drift
and the representation shift is only affecting late decoder
layers. However, in the domain-incremental setting, we see
that primarily the first layers are affected by the activation
drift and later layers slightly.



ERFNet

Cityscapes Night Rain Fog Snow
Test Zero Test Zero Test Zero Test Zero TestMethod

mIoU Shot mIoU Forgetting Shot mIoU Forgetting Shot mIoU Forgetting Shot mIoU Forgetting

FT 68.4 8.2 41.7 31.3 19.5 53.7 36.5 15.2 58.0 35.3 9.8 57.1 57.4
AutoAlb. 64.0 14.4 42.6 18.9 30.5 54.4 14.7 32.9 56.4 16.4 22.7 55.7 25.1
Distort 65.7 17.7 42.7 19.3 31.0 52.5 18.0 34.9 58.5 19.4 25.3 55.7 22.6
Gaus 65.0 6.1 40.4 27.3 17.3 54.2 41.4 14.1 57.8 28.4 8.1 56.0 43.2
Noise 65.4 3.6 42.7 27.8 20.8 51.8 37.7 18.6 55.6 32.9 15.6 56.4 49.8
ImageNet 70.4 10.7 42.8 29.0 25.7 56.1 36.2 26.1 64.6 30.1 17.8 58.6 59.5
MOCO 71.8 10.2 43.0 28.4 21.7 55.8 34.9 21.3 61.7 30.4 14.0 60.4 38.4
DINO 70.1 7.6 43.3 26.3 24.3 56.6 45.8 20.8 58.9 30.7 15.6 59.6 46.9
CN 70.4 9.6 40.4 21.7 27.5 52.7 15.4 27.8 61.9 17.9 12.2 59.5 20.8
Combined 69.8 11.6 43.2 15.0 37.6 57.5 8.0 44.3 65.5 11.3 32.7 59.8 17.2
Replay 68.4 8.2 39.3 8.8 19.5 53.9 7.7 15.2 58.7 8.0 9.8 58.1 7.2
Offline 40.1 43.1 15.6 50.5 55.1 19.9 58.1 61.5 14.9 53.6 55.8 23.3

Table 5. Results of ERFNet [13] on CS → ACDC in mIoU (%) for each subset of ACDC using different pre-training and augmenta-
tions strategies (Augment.). Compared to DeepLabV3+, ERFNet is much more affected by Forgetting, specifically on Snow. However,
Augmentations and pretraining show the same effects as for the experiments in the main paper.

BiSeNet V2

Cityscapes Night Rain Fog Snow
Test Zero Test Zero Test Zero Test Zero TestMethod

mIoU Shot mIoU Forgetting Shot mIoU Forgetting Shot mIoU Forgetting Shot mIoU Forgetting

FT 67.5 4.9 41.2 33.7 18.8 52.1 40.7 14.7 57.3 39.4 9.3 58.1 58.9
AutoAlb. 66.6 12.8 41.0 26.2 35.5 53.5 23.5 39.3 60.2 33.8 27.1 56.6 46.1
Distort 68.2 14.8 42.4 29.7 32.9 52.9 35.3 38.0 58.1 29.2 23.0 58.3 35.8
Gaus 67.1 3.8 40.8 34.2 17.6 52.9 41.2 13.9 59.4 48.1 11.0 59.1 58.9
ImageNet 69.5 7.0 42.1 35.7 20.2 54.7 49.9 14.0 60.8 46.3 13.7 57.9 62.8
CN 68.7 5.4 37.0 26.9 30.4 51.5 18.0 25.5 54.8 23.1 18.7 54.4 25.4
Combined 68.0 13.6 38.6 21.7 36.7 53.2 13.7 44.0 58.8 17.5 29.6 53.2 22.2
Replay 67.5 4.9 40.0 10.7 18.8 51.6 6.2 14.7 50.7 8.3 9.3 58.5 8.3
Offline 39.7 43.8 17.4 52.3 52.4 13.0 59.8 62.9 21.1 56.8 60.3 56.8

Table 6. Results of BiSeNet V2 [18] on CS → ACDC in mIoU (%) for each subset of ACDC using different pre-training and augmentations
strategies. Compared to DeepLabV3+, BiSeNet V2 is more affected by Forgetting.

Figure 5. Layer-stitching reveals that during class-incremental
learning (PascalVoc-15-5) the encoder layers are mostly stable,
only the decoder layers are changing drastically. In domain-
incremental learning observe the opposite, early layers show a big
discrepancy and later layers do not change as much.



HRNetV2-W48

Cityscapes Night Rain Fog Snow
Test Zero Test Zero Test Zero Test Zero TestMethod

mIoU Shot mIoU Forgetting Shot mIoU Forgetting Shot mIoU Forgetting Shot mIoU Forgetting

FT 70.7 6.1 42.1 38.0 22.8 59.7 37.2 19.9 67.0 36.2 15.7 62.7 44.1
AutoAlb. 72.4 19.6 44.8 33.1 43.0 58.1 12.6 55.4 68.2 15.2 37.5 61.8 20.4
Distort 70.4 15.7 44.8 21.7 33.3 58.9 13.0 38.6 64.3 11.7 24.5 62.9 18.1
Gaus 69.4 7.8 45.1 28.8 24.3 59.6 32.4 24.5 66.9 26.6 15.7 61.6 40.8
ImageNet 71.1 6.9 46.2 26.2 26.0 58.6 31.9 26.0 66.2 25.8 19.8 60.4 51.0
CN 70.5 9.8 41.9 17.0 29.9 57.0 13.1 28.1 65.9 17.1 19.7 58.0 21.8
Combined 71.8 17.7 41.9 10.4 46.3 60.4 9.3 56.9 66.6 11.1 41.3 62.1 11.3
Replay 70.7 6.1 45.2 9.8 22.8 59.2 3.3 19.9 68.9 4.4 15.7 63.3 5.9
Offline 44.8 45.6 32.5 57.9 57.9 2.4 62 68.8 2.4 58.2 63.1 4.3

Table 7. Results of HRNetv2 [15] on CS → ACDC in mIoU (%) for each subset of ACDC using different pre-training and augmentations
strategies. HRNetV2 performs similar to DeepLabv3+ on Cityscapes, but overall is more impacted by forgetting. The combination of
ImageNet pre-training, AutoAlbum. and Continual Normalization (Combined) leads to a significant reduction of forgetting.

RTFormer - Base

Cityscapes Night Rain Fog Snow
Test Zero Test Zero Test Zero Test Zero TestMethod

mIoU Shot mIoU Forgetting Shot mIoU Forgetting Shot mIoU Forgetting Shot mIoU Forgetting

FT 68.8 4.2 42.0 24.7 22.7 57.7 42.5 19.4 65.2 32.2 13.4 60.7 43.7
AutoAlb. 68.5 13.3 41.4 18.2 36.8 56.0 20.6 42.4 61.6 18.9 26.5 58.0 43.1
Distort 70.9 16.3 43.4 15.7 34.5 58.6 21.0 46.4 67.2 17.2 31.6 62.0 31.1
Gaus 66.9 6.9 40.7 25.8 13.6 58.0 40.5 14.4 62.4 25.1 7.4 60.5 47.9
ImageNet 70.8 5.5 42.2 28.1 22.4 59.1 39.3 21.4 65.7 27.2 16.7 61.9 38.9
CN 69.1 4.7 35.0 20.7 16.4 55.1 22.8 14.3 58.2 20.3 10.7 58.8 33.5
Combined 70.8 14.2 41.8 19.5 41.2 59.0 9.7 53.1 65.5 12.0 37.6 61.6 17.2
Replay 68.8 4.2 39.9 5.1 22.7 54.6 2.3 19.4 64.3 3.5 13.4 60.6 4.8
Offline 41.8 42.7 4.2 53.4 58.6 8 60.3 64.3 6.4 60.7 62.7 6.9

Table 8. Results of RTFormer [14] on CS → ACDC in mIoU (%) for each subset of ACDC using different pre-training and augmentations
strategies.
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