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Overview. In this supplementary material, we describe
the details of the downstream datasets adopted in the main
paper and show some example images. This document
also contains further implementation details regarding the
pre-training and downstream training steps, including fine-
tuning with limited labeled data. Last but not least, we
provide further analyses, such as the effectiveness of pre-
training for longer epochs and pre-training stability when
using data from different magnifications.

Note that the corresponding or relevant sections from the
main paper are referenced in blue text in the section titles.

A. Downstream Dataset Details (Section 4.2)
In this section, we describe the details of the datasets used

in our analysis. We use BACH, CRC, PCam, and MHIST for
the image classification task, and CoNSeP for the nuclei in-
stance segmentation task. We sample a few training images
from each dataset and present them in Fig. A.1 and Fig. A.2.
BACH. The goal of the Grand Challenge on BreAst Cancer
Histology (BACH) [2] is to classify pathology images into
four classes: normal, benign, in situ carcinoma, and invasive
carcinoma. The dataset is composed of 400 training images
and 100 test images. The test images are collected from a
different set of patients from the training images. All images
are collected from Hospital CUF Porto, Centro Hospitalar
do Tâmega e Sousa, and Centro Hospitalar Cova da Beira.
CRC. This dataset [15] consists of 100,000 training images
and 7,180 test images from H&E stained WSIs of human
colorectal cancer (CRC) and normal tissue. The training and
test images are extracted from 86 WSIs and 25 WSIs, respec-
tively. The slides are collected from the NCT Tissue Bank
and the University Medical Center Mannheim. The task is
the identification of nine tissue classes: adipose tissue, back-
ground, debris, lymphocytes, mucus, smooth muscle, nor-
mal colon mucosa, cancer-associated stroma, and CRC ep-
ithelium. All images are color normalized with the Macenko
method [18].

*The first two authors contributed equally.
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Figure A.1. Example training images from the classification
datasets: (a) BACH, (b) CRC, (c) PCam, and (d) MHIST.

PCam. The PatchCamelyon (PCam) [21] dataset is de-
rived from the Camelyon16 [3] dataset that contains 400
H&E stained WSIs from two hospitals: Radboud Univer-
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Figure A.2. Example training images from the CoNSeP dataset.
The dataset provides annotated nuclei masks along with cell type
labels. Following the original HoVer-Net paper [11], we use the
following nuclei types for training and evaluation: ■ epithelial,
■ inflammatory, ■ spindle-shaped, and ■ miscellaneous.

sity Medical Center (RUMC), and University Medical Cen-
ter Utrecht (UMCU). The PCam dataset includes 262,144
training images, 32,768 validation images, and 32,768 test
images. Each image is annotated with a binary label for de-
termining the presence of metastases.
MHIST. The minimalist histopathology image analysis
(MHIST) [22] dataset is comprised of 2,175 training images
and 977 test images. The images are extracted from 328
H&E stained Formalin Fixed Paraffin-Embedded (FFPE)
WSIs of colorectal polyps from Dartmouth-Hitchcock Med-
ical Center. The task is the binary classification between
hyperplastic polyps (HPs) and sessile serrated adenomas
(SSAs), where HPs are benign and SSAs are precancerous
lesions.
CoNSeP. The Colorectal Nuclear Segmentation and Phe-
notypes (CoNSeP) dataset [11] consists of 41 H&E images
and is split into 27 images and 14 images for training and test
sets, respectively. The data comes from University Hospi-
tals Coventry and Warwickshire, UK (UHCW). The anno-
tation contains segmentation masks of each nucleus along
with its class (See Fig. A.2). Note that the healthy epithe-
lial and dysplastic/malignant epithelial are considered gen-
eral epithelial types. Fibroblast, muscle, and endothelial are
matched into a spindle-shaped nuclei type. In total, 24,319
unique nuclei masks along with 4 major types out of 7 cell
types are used during training.

B. Implementation Details
In the interest of improving the reproducibility of our

study, we provide further details regarding our pre-training
data, setup, as well as details on how we conducted our
downstream evaluations. Furthermore, we discuss the de-
tails of the limited labeled data experiments.
B.1. Preparation of Pre-training Data (Section 4.1)

In selecting image patches to compose the TCGA dataset,
we first use an internal model with a DeepLab v3+ architec-
ture [6] to segment the foreground regions of WSI. From the
candidate patches that are located in areas predicted as fore-
ground, we select up to 500 patches per magnification, per
slide, with equal spacing between them. To ensure that we
have informative image patches in our pre-training dataset,
we filter out patches that are too white (mean saturation
value below 5) or too smooth (mean squared Laplacian be-
low 15). For TULIP, we do not apply such filtering logic due
to the relatively smaller foreground area (too many patches
are lost otherwise).
B.2. Calculating Statistics of the Pre-training Data

(Section 4.1)

For the purpose of input image standardization during
SSL pre-training, we collect the per-channel mean and stan-
dard deviation of intensities in RGB space, using 10% of
the full unlabeled image data. This subsampling is done per
WSI, to maintain diversity and reduce computational cost.

In a similar manner, we compute the per-channel means
and variances in 3 color spaces (HSV, Lab, HED) for use
with the RandStainNA method, using 10% of the full im-
age data. Specifically, we compute per color space, and
per channel, the mean and standard deviation of per-image
mean intensity, as well as the mean and standard deviation
of the per-image standard deviation of intensity. Please refer
to [20] for further details.

For RandStainNA𝐺𝑀𝑀 , we similarly compute per color
space, and per channel, the per-image mean intensity and its
standard deviation. However, instead of simply finding the
mean and standard deviation of those values independently
(fitting individual unimodal Gaussian distributions 18 times
as in RandStainNA), we fit a 10-component Gaussian Mix-
ture Model (GMM) for each color space, yielding 3 models.
This is done to fit the covariance between the input vari-
ables (6 variables exist for each color space) and respect their
multi-modal nature.
B.3. Augmentation Details (Section 3.2)

Unless otherwise stated, in our experiments, we pre-
train by applying the following changes to the default
method-specific augmentation scheme:

• Random vertical flip (p=0.5).



• Color dropping (p=0.2): the color of images are
converted randomly to grayscale.

• Weak color jittering (p=0.8): the brightness, con-
trast, saturation, and hue of images are randomly ad-
justed with a strength of 0.2, 0.2, 0.2, 0.1,
respectively.

• RandStainNA𝐺𝑀𝑀 (p=0.8): per image, a color
space is randomly selected (from HSV, Lab, or HED),
then channel-wise mean and standard deviation values
are sampled from a GMM which is fitted on statistics
from part of the pre-training data (10%). The input im-
age is re-normalized based on these values, using Rein-
hard’s method [19].

B.4. SSL Methods (Section 4.3)

We provide implementation details of each SSL method
used in our analysis. We use the VISSL [10] library to pre-
train the the 4 studied SSL methods, and follow the same
configurations as originally proposed in [4, 5, 9, 24]. All
representations are trained for 200 ImageNet epochs, dis-
tributed over 64 V100 16GB GPUs. A linear warmup sched-
ule is applied for the first 10 epochs and a cosine learn-
ing rate decay is applied subsequently. Each method was
originally proposed with its specific augmentation schemes,
and we follow those original data augmentation pipelines
while adding our proposed techniques on top. Regarding
the RandStainNA augmentation, it requires the statistics of
3 color spaces (HSV, Lab, HED) to produce augmented im-
ages. To compute the statistics, we randomly sample 10%
of the unlabeled image patches from the corresponding pre-
training dataset.
MoCo v2. We use the SGD optimizer with an initial learn-
ing rate of 0.3. The learning rate is linearly scaled up based
on lr = 𝑙𝑟 ∗ 𝑏𝑎𝑡𝑐ℎ𝑠𝑖𝑧𝑒/256, where batchsize is 4,096. The
memory bank size is fixed to 65,536, and a momentum co-
efficient m of 0.999 is used. Weight decay of 10−4 is utilized
for regularization.
SwAV. We use the SGD optimizer with an initial learning
rate of 0.3. The learning rate is linearly scaled up based
on lr = 𝑙𝑟 ∗ 𝑏𝑎𝑡𝑐ℎ𝑠𝑖𝑧𝑒/256, where batchsize is 2,048. The
number of prototypes is 3,000 to avoid intractable compu-
tational costs from the Sinkhorn algorithm. 2×224 + 6×96
multi-crop augmentation is employed as done in the original
paper.
Barlow Twins. The LARS optimizer [23] is adopted for
Barlow Twins pre-training. Note that, as in the original
work [24], we apply different learning rates for weights and
biases, 0.2 and 0.0048, respectively. The biases and batch
normalization layers are excluded from LARS optimization
to follow the original implementation. The learning rates
of weights and biases are linearly scaled up based on lr =

𝑙𝑟 ∗ 𝑏𝑎𝑡𝑐ℎ𝑠𝑖𝑧𝑒/256, where batchsize is 2,048. The dimen-
sion of the embeddings is 8,192, and training is conducted
with a coefficient of off-diagonal term 𝜆 = 5 ⋅ 10−3 and a
weight decay of 1.5 ⋅ 10−6.
DINO. We train the model with the AdamW [16] optimizer.
The learning rate of 0.0005 is used for stability during pre-
training. The learning rate is linearly scaled up based on lr =
𝑙𝑟 ∗ 𝑏𝑎𝑡𝑐ℎ𝑠𝑖𝑧𝑒/256, where batchsize is 1,024. Similar to the
learning rate decay, the weight decay also follows a cosine
schedule from 0.04 to 0.4. For DINO𝑝=16, 2× 224 + 8× 96
multi-crop augmentation is employed, while 2× 224 + 6×
96 multi-crop augmentation is used for DINO𝑝=8.
B.5. Downstream Training Details (Section 4.4)

Image Classification. We split each downstream dataset
into training, validation, and test sets. The learning rate
and weight decay values are optimized using training and
validation, only. In the BACH dataset, the labels for the
test set are not provided. Hence, we split the training set
by a 6:1:3 ratio (training, validation, test). For the CRC
and MHIST datasets, the test set is provided with labels,
and the training set is split by a 7:3 ratio (training, valida-
tion). For the PCam dataset, we follow the original data
split. When splitting the data, we do it randomly but in
a class-balanced manner. Based on the performance mea-
sured on the validation sets, we perform a grid search of
learning rates from {1, 0.1, 0.01, 0.001} and weight decay
values from {0.1, 0.01, 0.001, 0}.

As data augmentation for ResNet-50, the input image is
randomly flipped both horizontally and vertically, at train-
ing time. For the BACH dataset, we apply random cropping
and resizing to 1024 × 768 at training time; at test time, we
resize the images to 1024 × 768. For ViT-S, the same aug-
mentation is used but all images are resized to 224 × 224.
We train the models with the SGD optimizer with a momen-
tum of 0.9 and a cosine learning rate decay. The ResNet-50
based models are trained for 200, 20, 20, and 90 epochs on
the BACH, CRC, PCam, and MHIST datasets, respectively.
The Transformer-based models are trained for 30 epochs on
the CRC and PCam datasets and for 200 and 90 epochs on
the BACH and MHIST datasets, respectively. During fine-
tuning, the backbone layers (i.e., ResNet-50 and ViT-S) are
trained with a learning rate 100 times lower than that of the
last classification layer.
Nuclei Instance Segmentation. We follow the standard
pipeline of HoVer-Net [11], as provided in its open-source
implementation1, including data augmentation and patch
extraction. Hover-Net defines a two-stage training proce-
dure. At the first stage, only the decoders are trained while
freezing the backbone layers. With the trained decoders,

1https://github.com/vqdang/hover_net



Arch. Method BACH CRC PCam MHIST
Linear Fine-tune Linear Fine-tune Linear Fine-tune Linear Fine-tune

ResNet-50

Random 51.67 61.67 68.91 89.99 76.52 75.71 63.15 75.54
Supervised 80.83 86.67 90.93 92.09 80.79 80.63 76.25 78.92
Epoch 200
MoCo v2 77.50 90.83 93.52 96.21 86.78 87.62 77.07 85.88
SwAV 83.33 82.50 95.78 93.31 85.28 87.60 71.14 77.99
BT 87.50 85.00 94.60 93.23 88.15 86.92 78.81 81.27
Epoch 800
MoCo v2 79.17 91.67 95.01 95.45 87.84 86.90 72.77 84.95
SwAV 82.50 85.83 96.46 92.74 86.16 87.05 75.54 85.47
BT 86.67 91.67 94.48 94.99 86.26 86.75 78.20 80.25

ViT-S

Random𝑝=16 45.00 57.50 69.90 86.10 74.43 75.42 63.46 62.13
Supervised𝑝=16 75.83 85.83 91.56 95.81 80.96 88.30 78.51 81.68
Epoch 200
DINO𝑝=16 85.83 87.50 94.19 95.81 88.78 90.40 76.15 79.43
Epoch 400
DINO𝑝=16 86.67 88.33 95.13 96.48 88.60 89.50 75.44 81.06

Table C.1. Downstream evaluation of image classification tasks under a different number of pre-training epochs. We report Top-1
accuracy for both linear and fine-tuning experiment protocols trained using the TCGA data source. Note that 𝑝 represents the patch size
used in ViT. We compare results column-wise and mark the best results in bold and the second-best results in underline for ResNet-50 based
methods and ViT-S methods separately.

all layers are then fine-tuned at the second stage. Techni-
cally, Preact-ResNet-50 [14] is employed in the original im-
plementation, but we replace it with the standard ResNet-
50 [13] and reproduce the results for a fair comparison. This
is done to perform SSL pre-training in a standard manner
while permitting this nuclei instance segmentation down-
stream task. Since we change the backbone, we perform
Grid Search to find a proper learning rate. We use 5 ⋅ 10−4
learning rate for both stages of HoVer-Net. Moreover, based
on the open-source implementation, the authors of HoVer-
Net fine-tune the first convolutional layer of ResNet at the
first stage, but we keep them frozen.

Similar to the architecture of FPN-based instance seg-
mentation, HoVer-Net requires features from multiple scales
in the encoder. However, the outputs of the ViT-based
encoder are not compatible with the existing decoders of
Hover-Net without further modifications. In order to pro-
vide multi-scale features to the decoder, we refer to the pro-
tocol from [1] where the feature scales are interpolated us-
ing several transposed convolution layers with kernel size
𝑘 = 2 and stride 𝑠 = 2. More specifically, features from the
4𝑡ℎ, 6𝑡ℎ, 8𝑡ℎ, and 12𝑡ℎ layers are extracted from the ViT-S
architecture, which consists of 12 layers in total. With this
design, the decoders remain unchanged. For the sake of a
fair comparison, we also perform Grid Search on the ViT-S
architecture. The learning rate of 5 ⋅ 10−4 is used for both
stages of HoVer-Net.

B.6. Fine-tuning with Limited Labeled Data (Sec-
tion 5.4)

Image Classification. Following prior works [8, 12, 24],
we randomly sample 1% and 10% of the CRC training set
by balancing classes. Based on the fine-tuning procedure,
we train the models for 60 and 90 epochs for 1% and 10%
labeled data, respectively.
Nuclei Instance Segmentation using CoNSeP. In our lim-
ited labeled data experiments using CoNSeP, we control the
number of H&E images instead of the number of extracted
patches to mimic the real-world setting where one H&E im-
age corresponds to one unique patient. Since assuming 1%
of training data is unreasonable in the current setting (i.e,
0.27 H&E image), instead, we define the ratio of 10% and
30% for nuclei instance segmentation. Note that the re-
ported values in the experiments are the averaged number
from 3 repetitive experiments with different seed values for
image/patient selection. This is necessitated by the smaller
dataset size (compared to CRC) and is done for a fair com-
parison between methods.
C. Pre-training for more epochs (Section 5)

Typically, increasing the number of pre-training epochs
has shown to be effective in improving the learned represen-
tations in various SSL methods. To investigate the effective-



Figure C.1. The effectiveness of longer pre-training according to learning schedules. We present fine-tuning evaluation results for the
nuclei instance segmentation task using the CoNSeP dataset. We see that there are few differences between the 200 epoch models and 800
epoch models, except that SwAV benefits from longer pre-training when the downstream task is fine-tuned with a limited learning schedule.

Arch. Method CoNSePLinear Fine-tune

ResNet-50

Random 22.29 46.72
Supervised 34.25 49.60
Epoch 200
MoCo v2 39.85 51.75SwAV 40.45 51.16BT 40.79 51.61
Epoch 800
MoCo v2 40.93 51.64SwAV 40.59 52.39BT 40.65 52.00

ViT-S

Random𝑝=16 20.55 27.19
Supervised𝑝=16 21.43 36.70
Epoch 200
DINO𝑝=16 32.54 38.43
Epoch 400
DINO𝑝=16 32.93 39.03

Table C.2. Downstream evaluation for the nuclei instance
segmentation task under a different number of pre-training
epochs. We report the mPQ score for both linear and fine-tuning
experiment protocols for models trained using the TCGA data
source. We compare results column-wise and mark the best re-
sults in bold and the second-best results in underline for ResNet-50
based methods and ViT-S methods separately.

ness of the longer pre-training in the pathology domain, we
pre-train the model for 800 ImageNet epochs using MoCo
v2, SwAV, and Barlow Twins. Note that, due to computa-
tional costs, we report the results from DINO𝑝=16 trained for
400 ImageNet epochs.

Tab. C.1 and Tab. C.2 present the performance of im-

age classification and nuclei instance segmentation, respec-
tively. Compared to the results from 200 ImageNet epochs,
SwAV is the only method that benefits from the longer pre-
training in the fine-tuning protocol, especially in BACH,
MHIST, and CoNSeP datasets. In contrast, the other meth-
ods show marginal improvements or are on par with the 200
ImageNet epoch counterparts. DINO𝑝=16 shows a slightly
improved performance on image classification, while nuclei
instance segmentation remains on par. Even in the different
learning schedules illustrated in Fig. C.1, we observe that no
clear benefit of the longer pre-training stands out in MoCo
v2 and Barlow Twins, yet SwAV consistently maintains the
benefit of the longer pre-training.

Across all experiments, we confirm that certain SSL
methods (e.g., SwAV) may require more pre-training iter-
ations, but generally increasing the number of pre-training
epochs shows marginal improvements on both image clas-
sification and nuclei instance segmentation tasks. In other
words, pre-training for 200 ImageNet epochs can be suffi-
cient to achieve satisfactory downstream performance, espe-
cially for MoCo v2, Barlow Twins, and DINO. We therefore
suggest that using 200 ImageNet epochs would be adequate
to study the potential of SSL pre-training in the pathology
domain.

D. Pre-training Stability with Different Magni-
fications (Section 5.6)

In the main paper, we show that it is beneficial to train on
image data from a combination of 20× and 40× objective
magnifications. Here, we show that pre-training stability is
also affected by the choice of magnification. In Fig. D.1,
we present the loss trajectory during the pre-training stage
using Barlow Twins. As shown in the graph, using a single



Figure D.1. Loss progression while pre-training Barlow Twins
on different magnifications. Training on a combination of 20×
and 40× results in quick convergence and stable pre-training.

magnification produces unstable losses and the loss begins
to converge after approximately 4,000 and 7,000 iterations
for magnifications of 20× and 40×, respectively. The loss
values at the end of the pre-training stage are also higher
in the case of using a single magnification. In contrast, us-
ing multiple magnifications results in stable pre-training and
fast convergence, in addition to improved downstream task
performance.

E. Larger Inputs for ViT (Section 5.2)
The implementation of the standard HoVer-Net [11]

method involves the fine-tuning of a pre-trained ResNet, us-
ing images with a resolution of 270 × 270. However, by
design, ViT expects input images of 224 × 224 resolution.
Given the potential advantages that larger input resolutions
can bring to the task of nuclei instance segmentation, we
adopt a positional embedding interpolation technique to in-
crease the input image size to 272 × 272, which is divisible
by both 16 and 8. Through this technique, we aim to main-
tain consistent input resolutions across the ResNet and ViT
backbones being evaluated. Tab. E.1 presents the result ac-
cording to the input size. We observe that the larger input
size improves performance for DINO𝑝=16, while the perfor-
mance of DINO𝑝=8 reduces.

F. Further Data Augmentation Ablation Study
(Section 5.6)

To provide a compelling demonstration of the effective-
ness of the proposed techniques, we opted for the most
practical, yet challenging fine-tuning setting of nuclei in-
stance segmentation. Through the application of the lin-
ear evaluation protocol, we further validate the effective-

Arch. Method CoNSePLinear Fine-tune
224 input

ViT-S

Supervised𝑝=16 21.43 36.70
DINO𝑝=16 32.54 38.43
DINO𝑝=8 42.71 46.70
272 input
Supervised𝑝=16 28.60 34.50
DINO𝑝=16 35.81 41.13
DINO𝑝=8 40.08 44.24

Table E.1. Downstream evaluation for the nuclei instance seg-
mentation task under a different input resolution. We report the
mPQ score for both linear and fine-tuning experiment protocols for
models trained using the TCGA data source. We compare results
column-wise and mark the best results in bold and the second-best
results in underline.

BACH CRC PCam MHIST CoNSeP
BT trained on TCGA 84.2 94.2 84.5 78.0 40.9+ our aug. techniques 87.5 94.7 87.6 79.5 41.3

Table F.1. Benefit of our augmentation techniques. Linear eval-
uation results show that our proposed augmentation techniques
consistently and significantly improve performance.

ness of our techniques by showcasing improvements across
all datasets. Notably, our set of techniques consistently
and significantly improves the performance compared to the
baseline approach that relies on augmentations designed for
natural images. The improvement presented in Tab. F.1
serves as a clear signal of the effectiveness of our proposed
techniques, which were carefully designed with the aid of
domain-specific knowledge.

G. Intriguing Properties of Self-supervised ViT
(Section 5.2)

As part of an effort to explore the potential of domain-
aligned pre-training, we visualize the attention maps of
self-supervised ViT and supervised ViT pre-trained on Im-
ageNet. Our results, as illustrated in Fig. G.1, demon-
strate that SSL ViT interestingly identifies and locates cells
while also recognizing morphological phenotypes, which
is aligned with recent observations [7]. Specifically, atten-
tion heads 1 ∼ 4 attend to epithelial and inflammatory cells,
whereas heads 5 ∼ 6 focus on fibroblast cells. In contrast,
supervised ViT pre-trained on ImageNet fails to generate in-
terpretable signals due to the domain gap, highlighting the
effectiveness of domain-aligned pre-training in generating
informative signals for downstream tasks. We believe that
this intriguing property can be leveraged to enable future
potentials in the field of histopathology.



Head #1 Head #2 Head #3 Head #4 Head #5 Head #6

Su
pe

rv
ise

d
Se

lf-
Su

pe
rv

ise
d

Figure G.1. Visualizing multi-head self-attentions of ViT. We visualize the attention map of several pre-trained ViT-S. Specifically, ViT-S
has 6 attention heads. We visualize each head from the last layer of ViT. Our visualizations are presented in rows, with each row displaying
attention maps alongside their corresponding overlayed image. The first two rows showcase the qualitative result of the supervised ViT
pre-trained on ImageNet, while the next two rows display the qualitative result of the self-supervised ViT (DINO𝑝=16) pre-trained on TCGA.
Note that, the input image is resized to 480 × 480 resolution, and overlaid in "red" are visual tokens whose attention weight > 0.5 and span
16 × 16 pixels.

H. Qualitative Results of Nuclei Instance Seg-
mentation (Section 5.2)

In order to perform a qualitative assessment of the ef-
fect of domain-aligned pre-training on nuclei instance seg-
mentation, we compare the predictions of models using su-
pervised ImageNet pre-training and self-supervised TCGA
pre-training, adapted under the linear evaluation protocol.
The result presented in Fig. H.1 shows that domain-aligned
pre-training can offer the benefit on downstream tasks effec-
tively, resulting in capturing foreground cells and accurately
classifying them, in contrast to the model trained using Im-
ageNet pre-trained weight.

I. Slide-level Evaluation

The slide-level classification task is outside of the scope
of our work. Nonetheless, we conduct a preliminary exper-
iment to demonstrate the usefulness of the features learned
through SSL for this task, too. We train and test models
for the classification of breast cancer metastases in WSIs,
using the same configuration as CLAM [17] but on the
Camelyon16 [3] dataset. To extract features from the WSIs,
we use two pre-trained weights: “Supervised (IN)” and
“MoCo v2 (TC+TU)”. We find that models achieve an AU-
ROC of 0.986 when using “MoCo v2 (TC+TU)” pre-trained
weights, while models achieve an AUROC of 0.927 when
using “Supervised (IN)” pre-trained weights. This result in-
dicates that domain-aligned pre-training also can be benefi-
cial to the slide-level task.
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